Math, asked by pabhishek1009, 11 months ago

The general solution of the trigonometric equation sin x+cos x = 1 is given by :
(a) x = 2nπ ; n=0, ±1, ± 2 ...
(b) x = 2nπ + p / 2 ; n = 0, ±1, ± 2...
(c) x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4} ; n = 0, ±1, ± 2...
(d) none of these

Answers

Answered by talpadadilip417
0

Answer:

\scriptsize\mathtt \pink{=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r_{1 p }^{2}} \hat{ r }_{1 P }+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{r_{2 P }^{2}} \hat{ r }_{2 P }+\ldots .+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{n}}{r_{n P }^{2}} \hat{ r }_{n P }}

Similar questions