Math, asked by anjalraj17, 6 months ago

The given data represents the number of graduates
in 40 apartments in a housing complex. Construct an
array by arranging the given data in ascending order,
and find the arithmetic mean and median.
2 3 0 2 2 1 1 3 1 2
3 2 4 1 3 2 3 3 2 4
3 5 2 0 1 4 1 2 2 2 1
0 2 0 2 3 1 1 3 0 2​

Answers

Answered by skpillai636
3

Answer:

Step-by-step explanation:

Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of summarising the data in a compact, easily understood fashion. This is what descriptive statistics (as opposed to inferential statistics) is all about. In fact, to many people the term “statistics” is synonymous with descriptive statistics. It is this topic that we’ll consider in this chapter, but before going into any details, let’s take a moment to get a sense of why we need descriptive statistics. To do this, let’s load the aflsmall.Rdata file, and use the who() function in the lsr package to see what variables are stored in the file:

load( "./data/aflsmall.Rdata" )

library(lsr)

who()

There are two variables here, afl.finalists and afl.margins. We’ll focus a bit on these two variables in this chapter, so I’d better tell you what they are. Unlike most of data sets in this book, these are actually real data, relating to the Australian Football League (AFL)65 The afl.margins variable contains the winning margin (number of points) for all 176 home and away games played during the 2010 season. The afl.finalists variable contains the names of all 400 teams that played in all 200 finals matches played during the period 1987 to 2010. Let’s have a look at the afl.margins variable:

print(afl.margins)

##   [1]  56  31  56   8  32  14  36  56  19   1   3 104  43  44  72   9  28

##  [18]  25  27  55  20  16  16   7  23  40  48  64  22  55  95  15  49  52

##  [35]  50  10  65  12  39  36   3  26  23  20  43 108  53  38   4   8   3

##  [52]  13  66  67  50  61  36  38  29   9  81   3  26  12  36  37  70   1

##  [69]  35  12  50  35   9  54  47   8  47   2  29  61  38  41  23  24   1

##  [86]   9  11  10  29  47  71  38  49  65  18   0  16   9  19  36  60  24

## [103]  25  44  55   3  57  83  84  35   4  35  26  22   2  14  19  30  19

## [120]  68  11  75  48  32  36  39  50  11   0  63  82  26   3  82  73  19

## [137]  33  48   8  10  53  20  71  75  76  54  44   5  22  94  29   8  98

## [154]   9  89   1 101   7  21  52  42  21 116   3  44  29  27  16   6  44

## [171]   3  28  38  29  10  10Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of summarising the data in a compact, easily understood fashion. This is what descriptive statistics (as opposed to inferential statistics) is all about. In fact, to many people the term “statistics” is synonymous with descriptive statistics. It is this topic that we’ll consider in this chapter, but before going into any details, let’s take a moment to get a sense of why we need descriptive statistics. To do this, let’s load the aflsmall.Rdata file, and use the who() function in the lsr package to see what variables are stored in the file:

There are two variables here, afl.finalists and afl.margins. We’ll focus a bit on these two variables in this chapter, so I’d better tell you what they are. Unlike most of data sets in this book, these are actually real data, relating to the Australian Football League (AFL)65 The afl.margins variable contains the winning margin (number of points) for all 176 home and away games played during the 2010 season. The afl.finalists variable contains the names of all 400 teams that played in all 200 finals matches played during the period 1987 to 2010. Let’s have a look at the afl.margins variable:

print(afl.margins)

##   [1]  56  31  56   8  32  14  36  56  19   1   3 104  43  44  72   9  28

##  [18]  25  27  55  20  16  16   7  23  40  48  64  22  55  95  15  49  52

##  [35]  50  10  65  12  39  36   3  26  23  20  43 108  53  38   4   8   3

##  [52]  13  66  67  50  61  36  38  29   9  81   3  26  12  36  37  70   1

##  [69]  35  12  50  35   9  54  47   8  47   2  29  61  38  41  23  24   1

##  [86]   9  11  10  29  47  71  38  49  65  18   0  16   9  19  36  60  24

## [103]  25  44  55   3  57  83  84  35   4  35  26  22   2  14  19  30  19

## [120]  68  11  75  48  32  36  39  50  11   0  63  82  26   3  82  73  19

## [137]  33  48   8  10  53  20  71  75  76  54  44   5  22  94  29   8  98

## [154]   9  89   1 101   7  21  52  42  21 116   3  44  29  27  16   6  44

## [171]   3  28  38  29  10  10

Similar questions