The given expression wherever defined simplifies to
sin (270+a)cos (720°-a) -- sin(270° - a)sinº (540° + a)
sin 90+ a)sin(-6) - cos(a-180°)
cot(270° - a)
cosec (450° +a)
Answers
Given:
{ [sin (270+a)cos³ (720°-a) - sin(270° - a)sin³ (540° + a)] /[ (sin 90+ a)sin(-a) - cos²(180°-a)] } + { cot(270° - a) / cosec² (450° +a) }
To find: Simplified answer.
Solution:
- As we have given the trigonometric forms lets convert it in simplest form.
- Lets solve the first bracket, we get:
{ [sin (270+a)cos³ (720°-a) - sin(270° - a)sin³ (540° + a)] /[ (sin 90+ a)sin(-a) - cos²(180°-a)] }
- Simplifying it, we get:
[- cos a cos³ a - cos a sin³ a] / -cos a sin a - cos² a
- Taking -cos a common from numerator and denominator, we get:
-cos a [ cos³ a + sin³ a] / -cos a [cos a + sina]
- Now using formula a³+b³ = (a+b)(a²+b²-ab)
(cos a + sin a) (cos² a + sin² a -cos a sin a)/(cos a + sin a)
(1 - cos a sin a) .........(i)
- Now solving the next bracket we get:
{ cot(270° - a) / cosec² (450° +a) }
tan a / sec² a
sin a/ cos a x cos² a/1
sin a cos a .........(ii)
- Combining i and ii we get:
(1 - cos a sin a) + sin a cos a
1
Answer:
So, the given expression wherever defined simplifies to 1.