Math, asked by Anonymous, 1 month ago

The given figure is a combined solid made up of a cylinder and a
cone. The radius of the base of the solid object is 7cm, length of
the cylindrical part is 35 cm, and the total length of the solid
object is 59cm. Find the total surface area of the solid object
(Ans: 2244cm)​

Answers

Answered by Anonymous
0

Answer:

The most beautiful discovery true friends make is that they can grow separately without growing apart.”

Answered by DipZip
3

\sf\small\underline\purple{Given:-}

\sf{\implies Radius\:_{(solid\: object)}=7cm} \\  \\ \sf{\implies Length\:_{(solid\: object)}=59cm} \\  \\ \sf{\implies Height\:_{(Cylinder)}=35cm} \\  \\ \sf{\implies Height\:_{(Cone)}=59-35=24cm}

\sf\small\underline\purple{To\: Find:-}

\sf{\implies T.S.A\:_{(solid\: object)}=?}

\sf\small\underline\purple{Solution:-}

As per the given figure we have to find out the solid surface area area of object. Simply by applying formula to calculate the TSA of the object.

\sf\small\underline\purple{Formula\:Used:-}

\bf{\implies T.S.A\:_{(cylinder)}=2\pi\:r\:h+\pi\:r^2}

Only one base use for Cylinder

\bf{\implies T.S.A\:_{(cylinder)}=\pi\:r(2h+r)}

\tt{\implies \dfrac{22}{7}*7(2*35+7)}

\tt{\implies 22*(70+7)}

\tt{\implies 22*77}

\tt{\implies 1694cm^2}

ㅤㅤ

ㅤㅤ

\bf{\implies Slant\: height\:_{(cone)}=Radius^2+height^2}

\tt{\implies L^2=H^2+R^2}

\tt{\implies L^2= 24^2+7^2}

\tt{\implies L^2=576+49}

\tt{\implies L^2=625}

\tt{\implies L=\sqrt{625}}

\tt{\implies L=25cm}

ㅤㅤㅤㅤ

ㅤㅤㅤ

\bf{\implies C.S.A\:_{(cone)}=\pi\:r\:L}

\tt{\implies \dfrac{22}{7}*7*25}

\tt{\implies 22*25}

\tt{\implies 550cm^2}

ㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

 \therefore\tt{\implies T.S.A\:_{(solid\: object)}=T.S.A\:_{(cylinder)}+C.S.A\:_{(cone)}}

\tt{\implies T.S.A\:_{(solid\: object)}=1694+550}

\bf{\implies T.S.A\:_{(solid\: object)}=2244cm^2}

\rule{300px}{.7ex}

Similar questions