The given figure shows an equilateral triangle ABC whose side is 10 cm and a right angled triangle BDC whose side BD is 8 cm and angle D= 90°. Find the area of the shaded portion.
Ans:- 19.3
pls tell the steps to solve
Answers
Step-by-step explanation:
Given side of Equilateral ∆ = √3/4a²
a= 10 cm
Area = √3/4 ×10 ×10 cm²
Area = 100√3/4 cm² = 43.3
Now In ∆ BDC
D = 90°
BC² = BD² + CD²
100 = 36 + CD²
CD = √64 = 8
Area of ∆ BDC = 1/2 * 6* 8 = 24 cm²
Area of shaded region = 43.3 - 24 =19 .3 cm²
Answer:
19.30 cm²
Step-by-step explanation:
BC = AB = 10 cm
So the area of Triangle ABC
√s(s-a)(s-b)(s-c) = √15(15-10)(15-10)(15-10)
= √15(5)(5)(5)
= 25√3 cm²
Firstly we will find the side DC by pythagoras theorem.
DB² + DC² = BC²
8² + DC² = 10²
DC² = 10² - 8²
DC² = 100 - 64
DC² = 36
DC = √36 = 6 cm
Area of DBC = √s(s-a)(s-b)(s-c)
= √12(12-8)(12-10)(12-6)
= √12(4)(2)(6)
= 24 cm²
Area of shaded portion = 25√3 - 24 = 19.30 cm²