Math, asked by netrasadasivan, 1 year ago

The gradient of the curve x3+y3 = 9 at the point (1,2) is

Answers

Answered by deepamanasa
0

Answer:

equation=x3+y3

x=1,y=2

according to problem

(1)3+(2)3=9

3+6=9

Answered by pintusingh41122
14

Answer:

The gradient of the curve x^{3} +y^{3} =9 at the point (1,2) is -\frac{1}{4}

Step-by-step explanation:

Given the expression x^{3} +y^{3} =9 ....................................Equ(1)

 Given the point (1,2) means x=1,y=2

 Differentiating equ(1) with respect to x we get

  \frac{d}{dx} (x^{3} +y^{3} )=\frac{d}{dx} 9

or  \frac{d}{dx} x^{3} +\frac{d}{dx} y^{3} =\frac{d}{dx} 9

or \frac{d}{dx} x^{3} +\frac{d}{dy} y^{3} \times\frac{dy}{dx} =\frac{d}{dx} 9

As we know \frac{d}{dx} x^{n} =nx^{n-1} , n is exponent

                     \frac{dC}{dx} =0 , C is Constant

or 3x^{2} +3y^{2} \frac{dy}{dx} =0

or \frac{dy}{dx} =-\frac{3x^{2} }{3y^{2} }

or \frac{dy}{dx} =-\frac{x^{2} }{y^{2} }

Now  Gradient of the curve x^{3} +y^{3} =9 at the point (1,2)

          or \frac{dy}{dx} =-\frac{1^{2}}{2^{2}}

     or  \frac{dy}{dx} =-\frac{1}{4}

gradient of the curve is -\frac{1}{4}

 

Similar questions