The gradient of the curve y-xy+2px+3qy=0 at the point (3,2) is -2/3.the value of p and q are
Answers
Answered by
33
write naa
dy/dx=d(xy)/dx+d(2px)/dx+d(3qy)/dx d(xy)/dx=xdy/dx+y
dy/dx=xdy/dx+2p+3qdy/dx
dy/dx(1-x-3q)=2p
dy/dx=2p/(1-x-3q)
substitute values:
-2/3=2p/(1-3-3q)
4+6q=6p ---->eq1
y=xy+2px+3qy
subs values:
2=6+6p+6q
6p+6q= -4 -->eq2
Solve:
subs eq1 into eq2
6q+4+6q= -4
12q= -8
q= -2/3
p=6q+4
p=-4+4
p=0
Ans: p=0 q= -2/3
dy/dx=d(xy)/dx+d(2px)/dx+d(3qy)/dx d(xy)/dx=xdy/dx+y
dy/dx=xdy/dx+2p+3qdy/dx
dy/dx(1-x-3q)=2p
dy/dx=2p/(1-x-3q)
substitute values:
-2/3=2p/(1-3-3q)
4+6q=6p ---->eq1
y=xy+2px+3qy
subs values:
2=6+6p+6q
6p+6q= -4 -->eq2
Solve:
subs eq1 into eq2
6q+4+6q= -4
12q= -8
q= -2/3
p=6q+4
p=-4+4
p=0
Ans: p=0 q= -2/3
Answered by
18
Step-by-step explanation:
therefore value of p=1\2,q=1\6
Attachments:
Similar questions