Physics, asked by pedadaneelima19, 3 months ago

The graph between pressure of an ideal gas and the root mean
square speed of its molecules is (Assume constant density)
Ellipse
Parabola
Hyperbola
Straight Line​

Answers

Answered by ancyas808
10

Explanation:

pressure increases vrms is changed temperature is constant. v^2 rm =3RT/M. v^2rms directly propotional to temp. vrms is constant then strainght line

Answered by dualadmire
10

Given:

A graph is plotted between pressure of an ideal gas and the root mean square speed of its molecules.

To find:

The nature of the graph.

Solution:

The formula for root mean square speed of molecules of an ideal gas is

 \sqrt{ \frac{3rt}{m} }

r is the universal gas constant,

t is the temperature of the gas,

And m is the mass of the gass.

Since rms speed does not depend on pressure hence the graph will be a straight line which will show that there is no dependence of rms speed on pressure.

Coarrect option is "straight line ".

Similar questions