The graph of the creation 2x + 5y =6 Cuts the x-axis. at the point:
Answers
SOLUTION
TO DETERMINE
The graph of the creation 2x + 5y = 6 Cuts the x-axis at the point
EVALUATION
Here the given equation of the line is
2x + 5y = 6 - - - - - - - (1)
Now the line cuts x axis
Thus we have y = 0
From Equation 1 putting the value of y we have
2x = 6
⇒ x = 3
Hence the required point is (3,0)
FINAL ANSWER
The graph of the creation 2x + 5y = 6 Cuts the x-axis at the point (3,0)
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
Find the point where the graph of 0.25x + 0.05y =1.00 intersects the y-axis:
https://brainly.in/question/26332017
2. Find the equation of straight line passing through the point (-4,5) and making equal intercepts on the coordinate axis.
https://brainly.in/question/25257443
3. Find the slope of the line perpendicular to the line AB, if A is (3, 3) and B is (-1, 1)
https://brainly.in/question/27031626
The graph of the creation 2x + 5y =6 Cuts the x-axis is (3,0).
Step-by-step explanation:
We have to find the point at which the graph of linear equation 2x + 5y=6 cuts the x-axis.
Firstly, as we know that the point on the x-axis will have the y-coordinate as 0, this means that the point at which the graph of linear equation 2x + 5y = 6 cuts the x-axis is '(0,x)'.
Now, substituting this coordinate into the given linear equation, we get;
So, we put y=0 in 2x+5y=6
2x+5y=6
2x+(5×0)=6
2x=6
x=6/2
x=3
Hence, the coordinate on X-axis is (3,0)