Math, asked by ahirwarr9641, 1 year ago

The graphs of the equations 2x+3y-2=0 and x-2y-8=0 are two lines which are

Answers

Answered by AditiHegde
34

Given:

The graphs of the equations 2x+3y-2=0 and x-2y-8=0

To find:

The type of lines.

Solution:

Consider the attached figure while going through the following steps.

From given, we have,

2x + 3y - 2 = 0

x - 2y - 8 = 0

These two lines meet or intersect at a point (4, -2).

Therefore, these system of equations have an unique solution.

These lines are non - parallel and non - perpendicular.

Verification:

If these equations meet at a point, then this point has to satisfy both the equations. So, we have,

2x + 3y - 2 = 0

2 (4) + 3 (-2) - 2 = 0

8 - 6 - 2  = 0

2 - 2 = 0

0 = 0

x - 2y - 8 = 0

4 - 2 (-2) - 8 = 0

4 + 4 - 8 = 0

8 - 8 = 0

0 = 0

Hence verified.

Attachments:
Answered by amansharma264
2

EXPLANATION.

Graph of linear equations.

⇒ 2x + 3y - 2 = 0. - - - - - (1).

⇒ x - 2y - 8 = 0. - - - - - (2).

From equation (1), we get.

⇒ 2x + 3y - 2 = 0. - - - - - (1).

Taking y - axis it means x = 0.

Put the value of x = 0 in the equation, we get.

⇒ 2(0) + 3y - 2 = 0.

⇒ 3y - 2 = 0.

⇒ 3y = 2.

⇒ y = 0.66.

Their Co-ordinates = (0, 0.66).

Taking x - axis it means y = 0.

Put the value of y = 0 in the equation, we get.

⇒ 2x + 3(0) - 2 = 0.

⇒ 2x - 2 = 0.

⇒ 2x = 2.

⇒ x = 1.

Their Co-ordinates = (1,0).

From equation (2), we get.

⇒ x - 2y - 8 = 0. - - - - - (2).

Taking y - axis it means x = 0.

Put the value of x = 0 in the equation, we get.

⇒ (0) - 2y - 8 = 0.

⇒ - 2y - 8 = 0.

⇒ - 2y = 8.

⇒ 2y = - 8.

⇒ y = - 4.

Their Co-ordinates = (0, -4).

Taking x - axis it means y = 0.

Put the value of y = 0 in the equation, we get.

⇒ x - 2(0) - 8 = 0.

⇒ x - 8 = 0.

⇒ x = 8.

Their Co-ordinates = (8,0).

Both curves intersect at the point = (4, -2).

Attachments:
Similar questions