Math, asked by keshavdev4293, 10 months ago

The graphs of the quadratic function and the exponential function are shown below.




Considering only the domain shown on the graph, over which interval is the value of the exponential function greater than the value of the quadratic function?





Mark this and return

Sav

Answers

Answered by amitnrw
0

Given : The graphs of the quadratic function y = 2x² and the exponential function y=2ˣ

To Find : Considering only the domain shown on the graph, over which interval is the value of the exponential function greater than the value of the quadratic function

-2.5 ≤ x ≤ 0.75

1  < x ≤ 1.5

-0.5 ≤ x < 1

1  < x   ≤ 2.5

Solution:

from the graph :

y = 2ˣ  is in green  color

y =  2x²  in blue color

for   x = 1

=> y =  2x² = 2(1)² = 2  

   y = 2ˣ= 2¹ = 2  

value of the exponential function =  the value of the quadratic function

at x = 0

   y =  2x² = 2(0)² = 0  

   y = 2ˣ= 2⁰ = 1

1 > 0

=>   value of the exponential function greater than the value of the quadratic function

Hence  x  <  1

x = -0.5

  y =  2x² = 2(-0.5)² =  0.5

   y = 2ˣ= 1/√2 = 0.707

0.707 > 0.5

=>  value of the exponential function greater than the value of the quadratic function

Hence  for   -0.5 ≤ x < 1

 value of the exponential function greater than the value of the quadratic function

Learn More:

What is the value of f(−1) when f(x)=2x+2

brainly.in/question/13189742

Let f(x)=x2+ax+b. if for all non zero real xf(x+1/x)

brainly.in/question/11776274

Attachments:
Similar questions