Physics, asked by BathamAry, 1 year ago

The gravitational potential at height 'h'above earth's
surface is -5.12 x10'J/kg and acceleration due to
gravity at this point is 6.4 ms 2. If the radius of earth
is 6400 km, the value of his​

Answers

Answered by anu24239
2

SOLUTION

gravity \: at \: a \: height \: h = g {(1 +  \frac{h}{r} })^{ - 2}  \\ where \: r \: is \: the \: radius \: of \: the \: earth \\ g \: is \: the \: gravity \: at \: surface \: of \: earth \\  \\ acc \: to \: you \: gravity \: at \: h = 6.4m {sec}^{ - 2}  \\ g {(1 +  \frac{h}{r} })^{ - 2}  = 6.4 \\ 10 {(1 +  \frac{h}{r}) }^{ - 2}  = 6.4 \\  {(1 +  \frac{h}{r}) }^{ - 2}  = 0.64 \\  {(1 +  \frac{h}{r} )}^{2} =   \frac{100}{64}  \\  {( \frac{r + h}{r}) }^{2}  =  \frac{100}{64}  \\  \\  \frac{6400000 + h}{6400000}  =  \frac{10}{8}  \\ 8(6400000 + h) = 10(6400000) \\ 8h = 2(6400000)m \\  \\ h = 1600km......(1) \\  \\ potential \: energy \: at \: height \: h \\    - \frac{GmM}{h}  \\  \\ acc \: to \: you \: potential \: energy \:  =  - 5.12 \times 10 \\  \\ \frac{GmM}{h} = 5.12 \times 10 \\  \\  \frac{6 \times  {10}^{24} \times 6.6 \times  {10}^{ - 11}  \times m }{1600}  =5.12 \times 10 \\  \\ 0.24 \times  {10}^{13}  \times m = 5.12 \times 10 \\ m =  \frac{5.12 \times 10}{0.24 \times  {10}^{13} }  \\  \\ m =  21.3\times  {10}^{ - 12} kg

Answered by Anonymous
1

Explanation:

ohh...i don't understand this question

so u before answer will help u

mark him

Similar questions