English, asked by itzPapaKaHelicopter, 1 month ago

the gravitational pull experienced by the mass

so what hamne puri kosis ki hai answer dene ke glat hoo gya so what ham nahi dege answer aaapko ok ​

Attachments:

Answers

Answered by PatilSai0981
1

Answer:

Newton also concluded that the gravitational attraction between two bodies must be proportional to their masses. The more mass an object has, the stronger the pull of its gravitational force. The gravitational attraction between any two objects is therefore given by one of the most famous equations in all of science:

fgravity  = g  m1m2 \{r}^{2}

where F gravity is the gravitational force between two objects, M1 and M2 are the masses of the two objects, and R is their separation. G is a constant number known as the universal gravitational constant, and the equation itself symbolically summarizes Newton’s universal law of gravitation. With such a force and the laws of motion, Newton was able to show mathematically that the only orbits permitted were exactly those described by Kepler’s laws.

gravity is the gravitational force between two objects, M1 and M2 are the masses of the two objects, and R is their separation. G is a constant number known as the universal gravitational constant, and the equation itself symbolically summarizes Newton’s universal law of gravitation. With such a force and the laws of motion, Newton was able to show mathematically that the only orbits permitted were exactly those described by Kepler’s laws.Newton’s universal law of gravitation works for the planets, but is it really universal? The gravitational theory should also predict the observed acceleration of the Moon toward Earth as it orbits Earth, as well as of any object (say, an apple) dropped near Earth’s surface

Answered by Jaanvirajput0709
2

Answer:

Newton also concluded that the gravitational attraction between two bodies must be proportional to their masses. The more mass an object has, the stronger the pull of its gravitational force. The gravitational attraction between any two objects is therefore given by one of the most famous equations in all of science:

f gravity = g m1m2 \{r}^{2}

Similar questions