Math, asked by sindhuganaseelan3, 1 month ago

The greatest among ( sqrt(7 )- sqrt(5)),(sqrt(5) - sqrt(3)),( sqrt(9)- sqrt(7) )and (sqrt(11) - sqrt(9)) is : *​

Answers

Answered by bikramjeet19
0

Answer:

2222222222222222222222222222322222

Step-by-step explanation:

eqeeeeeeeeeeeeeeeeeeee2e2eq2eq2eq2eq2eq2eqeq2e sorry

Answered by DeeznutzUwU
0

Answer:

(\sqrt{5} - \sqrt{3} )

Step-by-step explanation:

Given Numbers are:

(\sqrt{7} -\sqrt5}),(\sqrt{5}-\sqrt{3}),(\sqrt{9}-\sqrt{7}),(\sqrt{11}-\sqrt{9})

Let us unrationalize the following terms:

⇒  (\sqrt{7} -\sqrt{5}) * \frac{(\sqrt{7} +\sqrt{5})}{(\sqrt{7} +\sqrt{5})}      

We know that (a+b)(a-b) = a^{2}-b^{2}

\frac{(\sqrt{7})^{2} - (\sqrt{5})^{2}}{\sqrt{7}+\sqrt{5}}

\frac{2}{\sqrt{7}+\sqrt{5}}

Similarly,

(\sqrt{5} - \sqrt{3}) = \frac{2}{\sqrt{5} + \sqrt{3}}

(\sqrt{9} - \sqrt{7}) = \frac{2}{\sqrt{9} + \sqrt{7}}

(\sqrt{11}- \sqrt{9}) = \frac{2}{\sqrt{11}+ \sqrt{9}}

We know that 3<5<7<9<11

Square rooting all sides

\sqrt{3}<\sqrt{5}<\sqrt{7} <\sqrt{9}<\sqrt{11}

This would also mean that,

(\sqrt{5}+\sqrt{3}) < (\sqrt{7}  + \sqrt{5})<(\sqrt{9} + \sqrt{7}) < (\sqrt{11} + \sqrt{9})

Taking reciprocal on all sides.

\frac{1}{(\sqrt{5}+\sqrt{3})} > \frac{1}{(\sqrt{7}  + \sqrt{5})} >\frac{1}{(\sqrt{9} + \sqrt{7})}  > \frac{1}{(\sqrt{11} + \sqrt{9})}

Multiplying by 2 on all sides.

\frac{2}{(\sqrt{5}+\sqrt{3})} > \frac{2}{(\sqrt{7}  + \sqrt{5})} >\frac{2}{(\sqrt{9} + \sqrt{7})}  > \frac{2}{(\sqrt{11} + \sqrt{9})}

(\sqrt{5}-\sqrt{3})>(\sqrt{7} -\sqrt5})>(\sqrt{9}-\sqrt{7})>(\sqrt{11}-\sqrt{9})

∴ The greatest among (\sqrt{7} -\sqrt5}),(\sqrt{5}-\sqrt{3}),(\sqrt{9}-\sqrt{7}),(\sqrt{11}-\sqrt{9}) is (\sqrt{5} - \sqrt{3} )

Similar questions