Math, asked by sharvarikulkarni2005, 3 days ago

The greatest value of f(x)=2x³ - 2x² - 12x+ 1 in the interval [-2, 5] is​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  {2x}^{3} -  {2x}^{2} - 12x + 1 \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}f(x) = \dfrac{d}{dx}[ {2x}^{3} -  {2x}^{2} - 12x + 1 ]\\

We know,

\boxed{\sf{  \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}  \:  \: }} \\

\boxed{\sf{  \:\dfrac{d}{dx} k  =  0  \:  \: }} \\

So, using these results, we get

\rm \: f'(x) =  {6x}^{2} - 4x - 12 \\

For critical points,

\rm \: f'(x) =  0 \\

\rm \:  {6x}^{2} - 4 x - 12 = 0 \\

On dividing by 2 both sides,

\rm \:  {3x}^{2} - 2 x - 6 = 0 \\

Now, its a quadratic equation, so we use Quadratic Formula to get the values of x

So, by using Quadratic formula, we get

\rm \: x = \dfrac{ - ( - 2) \:  \pm \:  \sqrt{ {( - 2)}^{2} - 4(3)( - 6)} }{2(3)}  \\

\rm \: x = \dfrac{ 2 \:  \pm \:  \sqrt{ 4 + 72} }{6}  \\

\rm \: x = \dfrac{ 2 \:  \pm \:  \sqrt{76} }{6}  \\

\rm \: x = \dfrac{ 2 \:  \pm \:  2\sqrt{19} }{6}  \\

\rm \: x = \dfrac{ 1 \:  \pm \:  \sqrt{19} }{3}  \\

\rm \: x = \dfrac{ 1 \:  \pm \: 4.36 }{3}  \\

\rm \: x = \dfrac{ 5.36 }{3} \:  \: or \:  \: x = \dfrac{ - 3.36}{3}   \\

\rm\implies \:x = 1.79 \:  \: or \:  \: x =  - 1.12 \:\:\:\in \:[-2, 5] \\

So, stationary points are x = - 2, - 1.12, 1.79, 5

Now, let calculate the value of f(x) at stationary points

We have,

\rm \: f(x) =  {2x}^{3} -  {2x}^{2} - 12x + 1 \\

So,

\rm \: f( - 2) =  {2( - 2)}^{3} -  {2( - 2)}^{2} - 12( - 2) + 1 \\

\rm \: f( - 2) =   - 16 -   - 8 + 24 + 1 \\

\rm\implies \:f( - 2) = 1 \\

Now,

\rm \: f( - 1.12) =  {2( - 1.12)}^{3} -  {2( - 1.12)}^{2} - 12( - 1.12) + 1 \\

\rm \: f( - 1.12) =   - 2.809856 - 2.5088 +  13.44 + 1 \\

\rm\implies \:f( - 1.12) = 9.12 \: ( \: approx \: ) \\

Now,

\rm \: f(1.79) =  {2(1.79)}^{3} -  {2(1.79)}^{2} - 12(1.79) + 1 \\

\rm \: f(1.79) =  11.4711 -  6.408 - 21.48 + 1 \\

\rm\implies \:f(1.79) =  -  \: 15.42 \:  \: ( \: approx \: ) \\

Now,

\rm \: f(5) =  {2(5)}^{3} -  {2(5)}^{2} - 12(5) + 1 \\

\rm \: f(5) =  250 - 50 - 60 + 1 \\

\rm\implies \:f(5) = 141 \\

So, from the above calculations, we concluded that

Greatest value of f(x)=2x³ - 2x² - 12x+ 1 in the interval [-2, 5] is 141 at x = 5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Method to find Local maxima or Local minima  :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Attachments:
Similar questions