Math, asked by Anonymous, 9 months ago

The greatest value of sin⁡ x cos⁡ x is : *​

Answers

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We know that for any angle  \theta \:

 - 1 \leqslant  \:  \sin \theta \:  \leqslant 1

So For any angle  \theta

The maximum value of

 \sin \theta

is 1

2.

 2\sin  x \cos x =  \sin \: 2x

TO DETERMINE

The greatest value of  \sin  x \cos x

CALCULATION

Here

 \sin  x \cos x

 \displaystyle \:  =  \frac{1}{2}  \times 2 \sin  x \cos x

 \displaystyle \:  =  \frac{1}{2}  \sin  2x

Now the maximum value of

 \sin 2x \:  \: is \:  \: 1

So the greatest value of

 \displaystyle \:     \sin  x  \cos x \:  \:  \: is \:  \:  \:  \frac{1}{2}

Similar questions