The green revolution plants are not high yielding.
true or false give reason
Answers
False
Though the high-yielding monohybrid crops were introduced as a part of Green Revolution, the major problem with indigenous seeds was not the fact that they were not high yielding, but their inherent inability to withstand the chemical fertilizers used
Answer:
THE ANSWER IS FALSE
The HYVs of rice suitable for cultivation in tropical climatic conditions of South Asia were developed by the IRRI in the 1960s, based on the genetic materials drawn from China, Taiwan, and Indonesia. The most famous rice variety introduced as a part of the Green Revolution in India was IR-8. It was developed based on experience in developing the Norin variety of Japan and Ponlai variety of Taiwan. IR-8 was short, stiff strawed, and highly responsive to the fertilizers. In India, the yield of IR-8 was 5–10 t per hectare.
Explanation:
Semi-dwarf wheat varieties developed in Japan in the 1800s were used to develop the HYVs of wheat. The two varieties namely Akakomugi and Daruma of Japan were used for the international breeding programs of wheat. Norin 10 was developed by crossing Daruma and native American varieties. In 1948, the US scientists crossed Norin 10 with Brevor, a native American variety to give rise to Norin-Brevor cross. This cross was taken to CIMMYT, Mexico, in 1954; there several HYVs of wheat were developed by Norman Borlaug and others, and these varieties were transferred to India in the 1960s.
The HYVs of wheat and rice were tested by the Indian scientists in 1962 and 1964 respectively. Later, these tested varieties were introduced throughout the nation during the crop year of 1965–1966. Thus, the Green Revolution involved the use of HYVs of wheat and rice and adoption of new agricultural practices involving the use of chemical fertilizers, pesticides, tractors, controlled water supply to crops, mechanical threshers, and pumps. The combination of these techniques was commonly termed as “high-yielding variety technology (HYVT).” This technology was responsible for the increased growth rate of food-grain output from 2.4% per annum before 1965 to 3.5% after 1965. Initially, the major increase in food production was due to increased production of wheat that increased from 50 million tonnes in 1950 to 79 million tonnes in 1964 and later to 95.1 million tonnes in 1968 . Since then, importing food grains has declined considerably.
The success of the Green Revolution in India in terms of crop yield is attributed to the government of India, international agricultural research institutions (IRRI and CIMMYT), multilateral and bilateral donor agencies (Ford Foundation, Rockefeller Foundation, and USAID), and the farmers. The Ministry of Food and Agriculture and the Indian Council of Agricultural Research (ICAR) meticulously executed the smooth transmission and distribution of new technology.
Ecological and societal impacts
In the past, Indian farms were small plots of land protected by windbreaks and tree cover. For centuries, the farmers employed several methods of organic husbandry, crop rotation, and leaving fields fallow for long periods of time in order to allow the soil to retain its nutrients. These practices lowered the demand on the land and maintained the equilibrium of soil