Physics, asked by dhivakar0772, 6 months ago

The gun of mass M fires a bullet of mass m with velocity V relative to the gun.The average force required to bring gun to rest in 0.5second is ​

Answers

Answered by shadowsabers03
14

Let \sf{v_b} and \sf{- v_g } be velocities of bullet and gun wrt the earth. Negative sign in \sf{-v_g} shows that the recoil of gun is in opposite direction to the motion of the bullet.

Given that \sf{V} is the velocity of the bullet wrt the gun, i.e.,

\sf{\longrightarrow V=v_b-(-v_g)}

\sf{\longrightarrow V=v_b+v_g}

\sf{\longrightarrow v_b=V-v_g}

By conservation of linear momentum,

\sf{\longrightarrow mv_b-Mv_g=0}

\sf{\longrightarrow mv_b=Mv_g}

\sf{\longrightarrow m\left(V-v_g\right)=Mv_g}

\sf{\longrightarrow \dfrac{V-v_g}{v_g}=\dfrac{M}{m}}

By rule of componendo and invertendo,

\sf{\longrightarrow \dfrac{v_g}{V}=\dfrac{m}{M+m}}

\sf{\longrightarrow v_g=\left(\dfrac{m}{M+m}\right)V }

Initially the gun was in rest, so its initial linear momentum,

  • \sf{p_i=0}

After firing the gun recoils backward with a velocity \sf{-v_g,} so its final momentum,

  • \sf{p_f=-Mv_g}

Hence the change in linear momentum of the gun,

\sf{\longrightarrow \Delta p=-Mv_g-0}

\sf{\longrightarrow \Delta p=-Mv_g}

\sf{\longrightarrow \Delta p=-\left(\dfrac{Mm}{M+m}\right)v_g}

The average force exerted on the gun due to the recoil in \sf{\Delta t=0.5\ s} is,

\sf{\longrightarrow F=\dfrac{\Delta p}{\Delta t}}

\sf{\longrightarrow F=-\dfrac{\left(\dfrac{Mm}{M+m}\right)v_g}{0.5}}

\sf{\longrightarrow F=-\left(\dfrac{2Mm}{M+m}\right)v_g}

Hence the average force required to bring the gun to rest will be,

\sf{\longrightarrow\underline{\underline{F'=\left(\dfrac{2Mm}{M+m}\right)v_g}}}

Answered by Anonymous
2

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

Let \sf{v_b} and \sf{- v_g } be velocities of bullet and gun wrt the earth. Negative sign in \sf{-v_g} shows that the recoil of gun is in opposite direction to the motion of the bullet.

Given that \sf{V} is the velocity of the bullet wrt the gun, i.e.,

\sf{\longrightarrow V=v_b-(-v_g)}

\sf{\longrightarrow V=v_b+v_g}

\sf{\longrightarrow v_b=V-v_g}

By conservation of linear momentum,

\sf{\longrightarrow mv_b-Mv_g=0}

\sf{\longrightarrow mv_b=Mv_g}

\sf{\longrightarrow m\left(V-v_g\right)=Mv_g}

\sf{\longrightarrow \dfrac{V-v_g}{v_g}=\dfrac{M}{m}}

By rule of componendo and invertendo,

\sf{\longrightarrow \dfrac{v_g}{V}=\dfrac{m}{M+m}}

\sf{\longrightarrow v_g=\left(\dfrac{m}{M+m}\right)V }

Initially the gun was in rest, so its initial linear momentum,

\sf{p_i=0}

After firing the gun recoils backward with a velocity \sf{-v_g,} so its final momentum,

\sf{p_f=-Mv_g}

Hence the change in linear momentum of the gun,

\sf{\longrightarrow \Delta p=-Mv_g-0}

\sf{\longrightarrow \Delta p=-Mv_g}

\sf{\longrightarrow \Delta p=-\left(\dfrac{Mm}{M+m}\right)v_g}

The average force exerted on the gun due to the recoil in \sf{\Delta t=0.5\ s} is,

\sf{\longrightarrow F=\dfrac{\Delta p}{\Delta t}}

\sf{\longrightarrow F=-\dfrac{\left(\dfrac{Mm}{M+m}\right)v_g}{0.5}}

\sf{\longrightarrow F=-\left(\dfrac{2Mm}{M+m}\right)v_g}

Hence the average force required to bring the gun to rest will be,

\sf{\longrightarrow\underline{\underline{F'=\left(\dfrac{2Mm}{M+m}\right)v_g}}}

{\huge{\underline{\small{\mathbb{\pink{HOPE \ THIS \ HELPED \ UH♡}}}}}}

Similar questions