Chemistry, asked by ROSHANS7432, 1 year ago

The half life of a first order reaction varies with temperature according to

Answers

Answered by khanaffan8506
4

Explanation:

  1. For a first order reaction, 2.t1/2-0.693/k (Here k is Rate constant). 3. Now from Arhenius Equation, k-Ae - Ea/RT) 4.From here you can find that ti/2 is proportional to e Ea/ RT)
Answered by tushargupta0691
0

Answer:

The half-life of a first-order reaction varies with temperature according to

ln t_{1/2}  ∝  \frac{1}{T}.

Explanation:

For the first-order reaction, the half-life of a reaction can be expressed as:

                                          t_{1/2} = \frac{0.693}{k}

                                              k = \frac{0.693}{t_{1/2} }

Taking ln on both sides of the above expression and we get,

                                           ln k = ln(0.693) - ln t_{1/2}            ......(1)

From the Arrhenius equation, the rate constant can be expressed as,

                                              k = A e^{\frac{-E_{a} }{RT} }

Taking ln on both sides of the above expression:

                                            ln k = ln A - \frac{E_{a} }{RT}                    ......(2)

From equation (1) & (2) we get,                                              

                     ln (0.693) - ln t_{1/2}  = ln A - \frac{E_{a} }{RT}

                                       ln t_{1/2}  = ln (0.693) - ln A + \frac{E_{a} }{RT}

Thus,  ln (0.693) - ln A + \frac{E_{a} }{RT} is constant. So,

                                       ln t_{1/2}\frac{1}{T}

Therefore, the half-life of a first-order reaction decreases with increases in temperature.

Hence, the half-life of a first-order reaction varies with temperature as  ln t_{1/2}\frac{1}{T}.

#SPJ3

Similar questions