The half life of first order reaction is 990s the initial concentration of the reactant is 0.08mol.dm3 what concentration would remain after 35 minutes
Answers
Answer:
k = 0.693 /t 1/2 = 0.693 /990 s = 7 × 10-4 s-1
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s,
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s, [A]t = ?
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s, [A]t = ? log10
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s, [A]t = ? log10 [A]0/ [A]t = k t /2.303 = 7 × 10-4 s-1 × 2100 s /2.303 = 0.6383
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s, [A]t = ? log10 [A]0/ [A]t = k t /2.303 = 7 × 10-4 s-1 × 2100 s /2.303 = 0.6383 [A]0/ [A]t = antilog 0.6383 = 4.35
t 1/2 = 0.693 /990 s = 7 × 10-4 s-1 k = 2.303 t log10 [A]0/ [A]t [A]0 = 0.08 mol dm-3, t = 35 min or 2100 s, [A]t = ? log10 [A]0/ [A]t = k t /2.303 = 7 × 10-4 s-1 × 2100 s /2.303 = 0.6383 [A]0/ [A]t = antilog 0.6383 = 4.35 Hence, [A]t = [A]0 4.35 = 0.08/ 4.35 = 0.0184 mol dm-3