The half life period of the body polonium 210 is about 140 days. During this period the average
no. of d-emissions per day from a mass of polonium initially equal to the 1 microgram 1s about 12
* 10, Assuming that one emission takes place per atom and that the approximate density of
polonium is 10 g em, estimate the number of atoms in 1 cm- of polonium.
Answers
Answered by
1
Answer:
sorry I do not now the answer
Answered by
3
Answer:
half life(T)=140 days
Average activity during 140 days(A)=12×10^12 disintegration per day
Then,total no. of atoms disintegrated after 140 days(N-N')
=12×10^12×140=1.68×10^15 atoms
where,N is no.of atoms after 140 days
N' is no.of atoms before 140 days(initial)
so,N'/2--N'=1.68×10^15 (N=N'/2 as N is no. of atoms after one half life)
N'=3.36×10^15 atoms
WE HAVE,initial mass(m)=10^-6 gram
density (d)=10g/cc
then,initial volume (V)=m/d=10^-7 cc
NOW,
10^-7 cc contains 3.36×10^15 atoms
so,1cc contains 3.36×10^15/10^-7 atoms
=3.36×10^22 atoms
THis is the required answer.
Thanks For Reading The Answer
Similar questions