Math, asked by gangappakurali9470, 3 months ago

the Half of a first order reaction is 60min.
What percent of reactant will be left behind after 120minutes?

Answers

Answered by MagicalBeast
16

Given :

Half life of first order reaction = 75 minutes

To find :

concentration after 120 minutes of reaction

Formula used :

 \sf \: k \:  =  \:  \dfrac{2.303}{t }   \times log( \dfrac{a}{(a - x)} )

Here,

k = rate constant

t = time

a = initial concentration

x = amount of reaction complete OR amount of reactant used

Solution:

First of all we will find rate constant of reaction

Part 1)

  • Half life = 60 min
  • a = a (let)
  • x = (a/2) { as half of reactant is used}

 \sf  \implies \: \: k \:  =  \:  \dfrac{2.303}{60 \: min }   \times log( \dfrac{a}{(a -  \frac{a}{2} )} )

 \sf  \implies\: k \:  =  \:  \dfrac{2.303}{60 \: min }   \times log( \dfrac{a}{( \frac{a}{2} )} )

 \sf  \implies\: k \:  =  \:  \dfrac{2.303}{60 \: min }   \times log( \dfrac{2a}{a} )

\sf  \implies\: k \:  =  \:  \dfrac{2.303}{60 \: min }   \times log( 2 )  \:  \:  \: equation \: 1

Part 2)

  • t = 120min
  • a = a
  • (a-x) = find

\sf  \implies \: \: k \:  =  \:  \dfrac{2.303}{120 \: min }   \times log( \dfrac{a}{(a -  x)} )

Put value of k from equation 1,

\sf  \implies \: \:\dfrac{2.303}{60 \: min }   \times log( 2 )  \:  =  \:  \dfrac{2.303}{120 \: min }   \times log( \dfrac{a}{(a -  x)} )

\sf  \implies  \: log( \dfrac{a}{(a -  x)} )  \:  =   \dfrac{2.303}{60 \: min }   \times log( 2 )  \:  \times \:  \dfrac{120min}{2.303 }

\sf  \implies  \: log( \dfrac{a}{(a -  x)} )  \:  =   \dfrac{2.303}{ 2.303 }   \times log( 2 )  \:  \times \:  \dfrac{120min}{60 \: min }

\sf  \implies  \: log( \dfrac{a}{(a -  x)} )  \:  =    log( 2 )  \:  \times \:  2

\sf  \implies  \: log( \dfrac{a}{(a -  x)} )  \:  =    log( {2}^{2}  )  \:

\sf  \implies  \: log( \dfrac{a}{(a -  x)} )  \:  =    log( 4 )  \:

\sf  \implies  \:  \dfrac{a}{(a -  x)}  = 4

\sf  \implies  \: ( a -  x) =   \dfrac{a}{4}

Fraction left = (1/4)th of original

ANSWER : (1/4)th of original

Similar questions