Math, asked by CycIe, 3 months ago

the HCF and LCM of two numbers are 12 and 5040 , respectively . if one of the numbers is 144 , find the other number?​

Answers

Answered by ItzTwinklingStar
167

Answer:

\begin{lgathered}\frak{Given}\begin{cases}& \sf{HCF\;of\;two\; Numbers =\frak{12}} \\ &\sf{LCM\;of\;two\;numbers=\frak{5040}} \\ &\sf{One\;of \: the \: number\;is=\frak{144}}\end{cases}\end{lgathered}

Need to find : The other number ?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

❍ Let the other required number be x respectively .

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀⠀

\bf{\star}\;\boxed{\textsf{\textbf{\pink{Product\;of\;two\; Numbers\;=\;LCM $\times$ \: HCF}}}}

⠀⠀⠀

⠀⠀⠀

\begin{lgathered}:\implies\sf x \times 144 = 12 \times 5040\\\\\\:\implies\sf x \times 144 = 60480 \\\\\\:\implies\sf x = \cancel\dfrac{60480}{144} \\\\\\:\implies{\underline{\boxed{\pink{\frak{x = 420}}}}}\;\bigstar\end{lgathered}

⠀⠀⠀

\therefore{\underline{\textsf{Hence, the other required number is {\textbf{420.}}}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\begin{lgathered}\qquad\quad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}}\\ \\\end{lgathered}

HCF is ( Highest common factor ) which is the greatest factor b/w given any numbers .

LCM is ( Lowest common factor ) which is the least number and LCM is exactly divisible by two or more numbers .

Answered by nabanechu1535
84

\begin{lgathered}\frak{Given}\begin{cases}& \sf{HCF\;of\;two\; Numbers =\frak{12}} \\ &\sf{LCM\;of\;two\;numbers=\frak{5040}} \\ &\sf{One\;of \: the \: number\;is=\frak{144}}\end{cases}\end{lgathered}

Need to find : The other number ?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

❍ Let the other required number be x respectively .

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀⠀

\bf{\star}\;\boxed{\textsf{\textbf{\red{Product\;of\;two\; Numbers\;=\;LCM $\times$ \: HCF}}}}

⠀⠀⠀

⠀⠀⠀

\begin{lgathered}:\implies\sf x \times 144 = 12 \times 5040\\\\\\:\implies\sf x \times 144 = 60480 \\\\\\:\implies\sf x = \cancel\dfrac{60480}{144} \\\\\\:\implies{\underline{\boxed{\blue{\frak{x = 420}}}}}\;\bigstar\end{lgathered}

⠀⠀⠀

\therefore{\underline{\textsf{Hence, the other required number is {\textbf{420.}}}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\begin{lgathered}\qquad\quad\boxed{\underline{\underline{\orange{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}}\\ \\\end{lgathered}

HCF is ( Highest common factor ) which is the greatest factor b/w given any numbers .

LCM is ( Lowest common factor ) which is the least number and LCM is exactly divisible by two or more numbers.

Similar questions