Social Sciences, asked by CycIe4, 2 months ago

the HCF and LCM of two numbers are 12 and 5040 , respectively . if one of the numbers is 144 , find the other number?​

Answers

Answered by PD626471
5

Answer:

\begin{gathered}\frak{Given}\begin{cases}& \sf{HCF\;of\;two\; Numbers =\frak{12}} \\ &\sf{LCM\;of\;two\;numbers=\frak{5040}} \\ &\sf{One\;of \: the \: number\;is=\frak{144}}\end{cases}\end{gathered}

Need to find: The other number?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

❍ Let the other required number be x respectively.

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀⠀

\bf{\star}\;\boxed{\textsf{\textbf{\pink{Product\;of\;two\; Numbers\;=\;LCM $\times$ \: HCF}}}}

⠀⠀⠀

Therefore,

⠀⠀⠀

\begin{gathered}:\implies\sf x \times 144 = 12 \times 5040\\\\\\:\implies\sf x \times 144 = 60480 \\\\\\:\implies\sf x = \cancel\dfrac{60480}{144} \\\\\\:\implies{\underline{\boxed{\pink{\frak{x = 420}}}}}\;\bigstar\end{gathered}

⠀⠀⠀

\therefore{\underline{\textsf{Hence, the other required number is {\textbf{420.}}}}}

⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\begin{gathered}\qquad\quad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}}\\ \\\end{gathered}

HCF is (Highest common factor) which is the greatest factor b/w given any numbers.

LCM is (Lowest common factor) which is the least number and LCM is exactly divisible by two or more numbers.

Answered by BrainlyBAKA
0

\Large\bold{\mathcal{\colorbox{yellow}{\blue{Solution:⤵}}}}  \\ \large \bold{ \mathtt{ \colorbox{red}{ \blue{Given \: HCF=12,LCM=5040}}}}  \\ \large \bold{ \mathcal{ \colorbox{pink}{ \pink{and also one number is 144}}}}  \\ \large \bold{ \mathtt{ \colorbox{yellow}{ \blue{Let the other number be x}}}}  \\ \large \bold { \mathtt{ \colorbox{orange}{{As we know that}}}} \\ \large \bold{ \mathtt{ \colorbox{blue}{ \orange{Product of two numbers is HCF×LCM}}}}  \\ \large \bold{ \mathtt{ \colorbox{orange}{ \red{⟹144×x=12×5040}}}}  \\ \large \bold{ \mathtt{ \colorbox{lime}{ \purple{⟹x=420}}}}  \\ \large \bold{ \mathtt{ \colorbox{aqua}{ \red{So, The other number is 420}}}}

Answered by BrainlyBAKA
0

\Large\bold{\mathcal{\colorbox{yellow}{\blue{Solution:⤵}}}}  \\ \large \bold{ \mathtt{ \colorbox{red}{ \blue{Given \: HCF=12,LCM=5040}}}}  \\ \large \bold{ \mathcal{ \colorbox{pink}{ \pink{and also one number is 144}}}}  \\ \large \bold{ \mathtt{ \colorbox{yellow}{ \blue{Let the other number be x}}}}  \\ \large \bold { \mathtt{ \colorbox{orange}{{As we know that}}}} \\ \large \bold{ \mathtt{ \colorbox{blue}{ \orange{Product of two numbers is HCF×LCM}}}}  \\ \large \bold{ \mathtt{ \colorbox{orange}{ \red{⟹144×x=12×5040}}}}  \\ \large \bold{ \mathtt{ \colorbox{lime}{ \purple{⟹x=420}}}}  \\ \large \bold{ \mathtt{ \colorbox{aqua}{ \red{So, The other number is 420}}}}

Answered by BrainlyBAKA
0

\Large\bold{\mathcal{\colorbox{yellow}{\blue{Solution:⤵}}}}  \\ \large \bold{ \mathtt{ \colorbox{red}{ \blue{Given \: HCF=12,LCM=5040}}}}  \\ \large \bold{ \mathcal{ \colorbox{pink}{ \pink{and also one number is 144}}}}  \\ \large \bold{ \mathtt{ \colorbox{yellow}{ \blue{Let the other number be x}}}}  \\ \large \bold { \mathtt{ \colorbox{orange}{{As we know that}}}} \\ \large \bold{ \mathtt{ \colorbox{blue}{ \orange{Product of two numbers is HCF×LCM}}}}  \\ \large \bold{ \mathtt{ \colorbox{orange}{ \red{⟹144×x=12×5040}}}}  \\ \large \bold{ \mathtt{ \colorbox{lime}{ \purple{⟹x=420}}}}  \\ \large \bold{ \mathtt{ \colorbox{aqua}{ \red{So, The other number is 420}}}}

Similar questions