French, asked by lite6, 2 months ago

the HCF and LCM of two numbers are 12 and 5040 , respectively . if one of the numbers is 144 , find the other number?​

Answers

Answered by PD626471
7

\begin{gathered}\frak{Given}\begin{cases}& \sf{HCF\;of\;two\; Numbers =\frak{12}} \\ &\sf{LCM\;of\;two\;numbers=\frak{5040}} \\ &\sf{One\;of \: the \: number\;is=\frak{144}}\end{cases}\end{gathered}

Need to find: The other number?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

❍ Let the other required number be x respectively.

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀⠀

\bf{\star}\;\boxed{\textsf{\textbf{\pink{Product\;of\;two\; Numbers\;=\;LCM $\times$ \: HCF}}}}⋆

⠀⠀⠀

Therefore,

⠀⠀⠀

\begin{gathered}:\implies\sf x \times 144 = 12 \times 5040\\\\\\:\implies\sf x \times 144 = 60480 \\\\\\:\implies\sf x = \cancel\dfrac{60480}{144} \\\\\\:\implies{\underline{\boxed{\pink{\frak{x = 420}}}}}\;\bigstar\end{gathered}

⠀⠀⠀

\therefore{\underline{\textsf{Hence, the other required number is {\textbf{420.}}}}}

⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\begin{gathered}\qquad\quad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}}\\ \\\end{gathered}

HCF is (Highest common factor) which is the greatest factor b/w given any numbers.

LCM is (Lowest common factor) which is the least number and LCM is exactly divisible by two or more numbers.

Answered by OoINTROVERToO
0

 \bold{ \pmb{GIVEN}} \\ \red{ \tt HCF \:  of \:  two \:  numbers} = 12 \\  \tt \red{ \: LCM \:  of \:  two \:  number} = 5040 \\  \tt \red{ \: One \:  number }= 144 \\  \\  \\   \bold{\pmb{TO  \:  \: FINd}} \\  \bf{  \: Other \:  number} \\  \\  \\  \bold{ \pmb{SOLUTION}}  \\  \\   \small{\boxed{\cal{LCM \times HCF = Product \: of \: two \: numbers}}} \\  \\  \sf \: Let  \: the \:  other  \: number  \: be \:  b \\ \rm 12 \times 5040 = 144 \times b \\ \rm  60480 = 144b \\ \rm  \: b =  \dfrac{60480}{144} \\  \\  \boxed{\bold {\pmb{\blue{\underline{ \dag \:  \: Other \:  \:  number = 420}}}}}

Similar questions