Math, asked by laxmangaonkar368, 9 months ago

The HCF of 306 and 657 is 9. Their LCM is option is (1)306 (2)657 (3)22338 (4)1​

Answers

Answered by Anonymous
4

AnswEr :

ɢɪɴ:

\qquad\bullet\normalsize\sf\ H.C.F. = 9

\qquad\bullet\normalsize\sf\ \: \left( a,b \right) = \left( 306,657 \right)

ғɪɴ:

\qquad\bullet\normalsize\sf\ L.C.M

sʟɪɴ:

\underline{\bigstar\:\sf{According  \: to \: given \: in \: question:}}

\normalsize\ : \implies\sf\ H.C.F \times\ L.C.M = a \times\ b

Put the known values;

\normalsize\ : \implies\sf\ 9 \times\ L.C.M = 306 \times\ 657

\normalsize\ : \implies\sf\ L.C.M = \frac{ 306 \times\ 657}{9}

\normalsize\ : \implies\sf\  L.C.M =  22338

\normalsize\ : \implies{\underline{\boxed{\mathsf \pink{ L.C.M =  22338}}}}

\therefore\:\underline{\textsf{Hence, \: the \: correct \: option \:  is}{\textbf{\: (a)}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ᴠᴇʀɪғɪᴄᴀᴛɪᴏɴ:

\normalsize\ : \implies\sf\ H.C.F \times\ L.C.M = a \times\ b

\normalsize\ : \implies\sf\ 9 \times\ 22338 = 306 \times\ 657

\normalsize\ : \implies\sf\ 201,042 = 201,042

\normalsize\ : \implies\sf\ L.H.S. = R.H.S

\qquad\underline{\dag\:\bf{Hence, \: Verified}}

Similar questions