Math, asked by chithra60, 11 months ago

the hcf of x^3+1 and x^4-1 is​

Answers

Answered by CHANDU6545
17

Solution:-

The factors of (X^3 + 1) = (X + 1) (X^2 + 1^2 + 2 X)

The factors of (X^4 – 1) = (X^2 – 1) (X^2 + 1)

= (X + 1) (X – 1) (X^2 + 1)

Then, the H. C. F. of X^3 + 1 and X^4 – 1 = X + 1

Answered by swethassynergy
2

The hcf of x^{3} + 1 and x^{4} -1 is​ (x+1).

Step-by-step explanation:

Given:

x^{3} + 1

x^{4} -1

To Find:  

The hcf of x^{3} + 1 and x^{4} -1.

Solution:

As given,x^{3} + 1.

Factorizing x^{3} + 1=(x+1) (x^{2} -x+1),

                                              Using identity p^{3} +q^{3} =(p+q)(p^{2} -pq+q^{2} ).

Factorizing x^{4} -1=(x^{2} -1)(x^{2} +1)

                              =(x-1)(x+1)(x^{2} +1),

                                               Using identity (p^{2} -q^{2} )=(p-q)(p+q).

Therefore,The hcf of x^{3} + 1 and x^{4} -1  =(x+1).

Thus,the hcf of x^{3} + 1 and x^{4} -1  is  (x+1).

#SPJ2

Similar questions