Math, asked by pinturichard77, 5 hours ago

the HCF of (x4 - y4) and (x6 - y6) is? ​

Answers

Answered by annie23572
3

Answer:

Both numbers have 1,2,3, and 6 as common factors but among these common factors,6 is the highest common factor that can divide both 12 and 18 without remainders. This means 6 is the hcf

Answered by xxblackqueenxx37
21

 \: •\huge\bigstar{\underline{{\red{A}{\pink{n}{\color{blue}{s}{\color{gold}{w}{\color{aqua}{e}{\color{lime}{r}}}}}}}}}\huge\bigstar•

 \sf \:  =  \: let \: f(x) = ( {x}^{4}  - y ^{4} ) \:  \:  \:  \:  \:  \:  \:  \\  \sf \:  =  \: ( {x}^{2}  -  {y}^{2} )( {x}^{2}  +  {y}^{2} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \:  =  \: (x - y)(x + y)( {x}^{2}   +  {y}^{2} ) \\  \sf \: and \: g(x) = ( {x}^{6}  -  {y}^{6} ) \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \:  =  ({x}^{3})^{2}   - ({y}^{3})^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf \:  =  \: ( {x}^{3}  +  {y}^{3} )( {x}^{3}  -  {y}^{3} )

 \sf \: =  (x + y) ({x}^{2}  - xy +  {y}^{2} )(x - y)({x}^{2}  - xy +  {y}^{2} ) \\  \sf \:  = (x - y)(x + y)( {x}^{2}  - xy +  {y}^{2} ) (x² + xy + y²)

  \sf \: \: HCF  \: of  \: [f(x), g(x)] = (x - y) (x + y) \\  \sf \: ans =  {x}^{2}  -  {y}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hope it was helpful to you

Similar questions