The heat of combustion of solid benzoic acid at constant volume is 321.30 k j at 27 c 321.30kjat27c . The heat of combustion at constant pressure is
Answers
Answered by
26
-321.30 - 150 R
C6H5COOH(s)+152O2(g)⟶7CO2(g)+3H2O(l)C6H5COOH(s)+152O2(g)⟶7CO2(g)+3H2O(l)
Since, Δng=nP−nRΔng=nP−nR
ΔngΔng = 7 - 152=−12152=−12
ΔH=ΔE+ΔngRTΔH=ΔE+ΔngRT
ΔH=−321.30−(12×R×300)=−321.30−150R
C6H5COOH(s)+152O2(g)⟶7CO2(g)+3H2O(l)C6H5COOH(s)+152O2(g)⟶7CO2(g)+3H2O(l)
Since, Δng=nP−nRΔng=nP−nR
ΔngΔng = 7 - 152=−12152=−12
ΔH=ΔE+ΔngRTΔH=ΔE+ΔngRT
ΔH=−321.30−(12×R×300)=−321.30−150R
Answered by
87
C6H5COOH(s) + 15/2 O2(g) ----> 7CO2(g) + 3H2O(l)
1 mol 15/2 mol 7 mol
△ng = np - nR = 7 - (15/2) = - 0.5 mol ;
qv = -312.3 KJ
qp = qv + △ng RT ---(1)
qp = -312.3 + (-0.5) x R x
(273 + 27 i.e, 300K)
= -312.3 - 150 R
I hope this helps you, if there is any confusion please let us know!
Similar questions