Math, asked by manjusinghal0824, 4 months ago

the height and base diameter of a conical tent is 16m and 24mrespectivelyfind the cost of canvas require to make at rate of 210per m​

Answers

Answered by EliteZeal
95

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Height of conical tent is 16 m

  • Diameter of conical tent is 24 m

  • Rate of canvas is 210 per m

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The cost of canvas require to make the tent at rate of Rs 210 per m

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • To find the convas used to make tent we need to calculate the surface area of cone

 \:\:

 \underline{\bold{\texttt{Curved surface area of cone :}}}

 \:\:

➠ π r l ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • r = Radius of base of cone

  • l = Slant height

 \:\:

 \sf Radius = \dfrac { Diameter } { 2 }

 \:\:

➜ Radius of base of cone =  \sf \dfrac { 24 } { 2 }

 \:\:

  • Radius of base of cone = 12 m

 \:\:

Now we need to find the slant height of cone

 \:\:

 \sf l = \sqrt { h ^2 + r ^2 } ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • l = Slant height

  • h = Height

  • r = Radius of base of cone

 \:\:

Given that , h = 16 & r = 12

 \:\:

Putting these values in ⓶

 \:\:

 \sf l = \sqrt { 16^2 + 12^2 }

 \:\:

 \sf l = \sqrt { 256 + 144}

 \:\:

 \sf l = \sqrt { 400}

 \:\:

➜ l = 20 m ⚊⚊⚊⚊ ⓷

 \:\:

  • Hence the slant height is 20 m

 \:\:

 \underline{\bold{\texttt{Curved surface area of given conical tent :}}}

 \:\:

  • r = 12

  • l = 20

 \:\:

Putting the above values in ⓵

 \:\:

➜ π r l

 \:\:

➜ π (12) (20)

 \:\:

➜ 240π

 \:\:

 \underline{\bold{\texttt{Cost of canvas :}}}

 \:\:

Curved surface area × Rate of canvas

 \:\:

➜ 240π × 210

 \:\:

 \sf 240 \times \dfrac { 22 } { 7 } \times 210

 \:\:

 \sf 240 \times 22 \times 30

 \:\:

➨ Rs 158400

 \:\:

  • Hence the cost of canvas is Rs 158400

 \:\:

Additional information

 \:\:

Volume of cone

 \:\:

  •  \sf \dfrac { 1 } { 3 } \pi r ^2 h

 \:\:

Where ,

 \:\:

➻ r = Radius of base

➻ h = Height

 \:\:

Total surface area of cone

 \:\:

  • πr(l + r)

 \:\:

Where ,

 \:\:

➻ l = Slant height

➻ r = Radius of base

Similar questions