Math, asked by harkamal625, 6 months ago

The height and base of a parallelogram are in the ratio 5:4. If the area of the parallelogram is 1620 sq.m, then find the base and altitude.
(2 Points)​

Answers

Answered by krishna9042
1

Answer:

Hope it will help you...

Attachments:
Answered by CɛƖɛxtríα
43

The base and the altitude of the parallelogram are 36 m and 45 m respectively.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • The ratio of height and the base of the parallelogram = 5 : 4
  • Area of the parallelogram = 1620 m²

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The length of base and altitude (height).

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{(||-gram)}=bh\:sq.units}}}

\:\:\:\:\:\:\:\:\sf{\bullet\:b=base}

\:\:\:\:\:\:\:\:\sf{\bullet\:h=height}

{\underline{\underline{\bf{Solution:}}}}

Let the measures of base and height be \bf{5x} and \bf{4x}, respectively.

As the measure of area of the ||-gram is given, we can find the value of \bf{x} by, substituting the measures in the formula:

\leadsto{\sf{\purple{Area=bh\:sq.units}}}

\:\:\:\:\:\:\::\implies{\sf{1620=5x\times 4x}}

\:

\:

\:\:\:\:\:\:\:\:\:\::\implies{\sf{1620=20\times x^2}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{162\cancel{0}}{2\cancel{0}}=x^2}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{81=x^2}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\sqrt{81}=x}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{9=x}}

{\boxed{\textsf{\orange{The value of x is \underline{\bf{$9$}}}}}}

Hence,

  • Altitude \bf{(5x)\sf{=5\times 9={\underline{\underline{\red{45\:m}}}}}}
  • Base \bf{(4x)\sf{=4\times 9={\underline{\underline{\red{36\:m}}}}}}

_____________________________________________

Similar questions