Math, asked by sajiya95, 4 months ago

The height and base of a triangle are in the rato 5:6, and the area of the triangle is 60sq.m . Find the base and height ​

Answers

Answered by rajlakshmichhoti
0

Answer:

10m and 12m

Step-by-step explanation:

let the height and base in x

= 5x:6x

Area of triangle = 1/2 × b × h

60 = 1/2 × 5x × 6x

60 = 15x^2

60/15 = x^2

4 = x^2

√4 = x

2 = x

therefore, height = 5×2

= 10 m

And, base = 6×2

= 12m

Answered by Mihir1001
2

\underline{\bold{Question : }}

 \sf{The \: height \: and \: base \: of \: a \: triangle \: are \: in \: the} \\  \sf{ratio \: 5:6 \: and \: the \: area \: of \: the \: triangle \: is \: 60} \\  \sf{sq. \: metres. \: Find \: the \: base \: and \: the \: height.}

 \underline \bold{Solution : }

 \sf{let \: the \: ratio \:  be \ \ 5x:6x.}

now,

 \begin{aligned} ar.( \triangle)  \qquad \qquad \ \ &= 60 \:  { \sf{m}}^{2}  \\  \\  \implies \frac{1}{2}   \times  \small{base} \times  \small{height} &= 60 \:  { \sf{m}}^{2}  \\  \\  \implies \frac{1}{ \cancel{2}}  \times 5x \times  \cancel{6}x  \ {}^{3}  \quad &= 60 \:  { \sf{m}}^{2}  \\  \\  \implies x \times x  \qquad \qquad \quad&=  \frac{ \cancel{60} \:   {}^{ \cancel{12} \:  {}^{4} } }{_1  \cancel5 \times  \cancel3 _1 } \:  { \sf{m}}^{2}  \\  \\  \implies {x}^{2} \qquad \qquad \qquad  \:  \:   &= 4 \:  { \sf{m}}^{2}  \\  \\  \implies  \:  x \qquad \qquad\qquad \:  \:   \: &= 2 \:  \sf{m}  \end{aligned}

Hence,

  •  \sf{height} = 5x = 5(2m) = 10 \: metres
  •  \sf base = 6x = 6(2m) = 12 \: metres
Similar questions