The height and diameter of a conical flask is 15 cm and 14 cm respectively. Find the amount of water it can contain.
Answers
Step-by-step explanation:
Given :
The height and diameter of a conical flask is 15 cm and 14 cm respectively .
To Find :
Amount of water it can contain .
Solution :
\longmapsto\tt{Height\:of\:flask(h)=15\:cm}⟼Heightofflask(h)=15cm
\longmapsto\tt{Radius\:of\:flask(r)=\dfrac{14}{2}=7\:cm}⟼Radiusofflask(r)=
2
14
=7cm
Using Formula :
\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}⟼
VolumeofCone=
3
1
πr
2
h
Putting Values :
\longmapsto\tt{\dfrac{1}{\cancel{3}}}\times\dfrac{22}{{\cancel{7}}}\times{{\cancel{7}}}\times{7}\times{{\cancel{15}}}⟼
3
1
×
7
22
×
7
×7×
15
\longmapsto\tt{22\times{7}\times{5}}⟼22×7×5
\longmapsto\tt\bf{770\:{cm}^{3}}⟼770cm
3
So , The amount of water it can contain is 770 cm³ .
Option 2) 770 cm³ is Correct .
__________________
C.S.A of Cone = πrl
T.S.A of Cone = πr(l+r)
Volume of Cone = ⅓πr²h
Here :
r = radius of cone
h = height of cone
l = slant height of cone
π = 22/7 or 3.14
__________________