Math, asked by sonuagre96, 1 month ago

The height and diameter of a conical flask is 15 cm and 14 cm respectively. Find the amount of water it can contain.

Answers

Answered by juhidubey9906
0

Step-by-step explanation:

Given :

The height and diameter of a conical flask is 15 cm and 14 cm respectively .

To Find :

Amount of water it can contain .

Solution :

\longmapsto\tt{Height\:of\:flask(h)=15\:cm}⟼Heightofflask(h)=15cm

\longmapsto\tt{Radius\:of\:flask(r)=\dfrac{14}{2}=7\:cm}⟼Radiusofflask(r)=

2

14

=7cm

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}⟼

VolumeofCone=

3

1

πr

2

h

Putting Values :

\longmapsto\tt{\dfrac{1}{\cancel{3}}}\times\dfrac{22}{{\cancel{7}}}\times{{\cancel{7}}}\times{7}\times{{\cancel{15}}}⟼

3

1

×

7

22

×

7

×7×

15

\longmapsto\tt{22\times{7}\times{5}}⟼22×7×5

\longmapsto\tt\bf{770\:{cm}^{3}}⟼770cm

3

So , The amount of water it can contain is 770 cm³ .

Option 2) 770 cm³ is Correct .

__________________

C.S.A of Cone = πrl

T.S.A of Cone = πr(l+r)

Volume of Cone = ⅓πr²h

Here :

r = radius of cone

h = height of cone

l = slant height of cone

π = 22/7 or 3.14

__________________

Similar questions