Math, asked by veerpal99528, 6 months ago


The height and radius of a cone are 14 cm and 6 cm respectively. find the volume ofthe cone.​

Answers

Answered by Anonymous
1

Answer:

h=14 cm ,. r= 6cm

volume of the cone = \frac{1}{3} πr²h

= \frac{1}{3} ×  \frac{22}{7} ×(6)² × 14

=528 cm³

Step-by-step explanation:

hope it helps ☺️.....

Answered by SarcasticL0ve
39

AnswEr:

⠀⠀

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm} \qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{14 cm}}\put(3,2){\line(0,2){4.5}}\put(1.4,1.6){\sf{6 cm}}\qbezier(.185,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

⠀⠀

\bf GivEn\begin{cases} & \sf{Height\;of\;cone = \bf{14\;cm}}  \\ & \sf{Radius\;of\;cone = \bf{6\;cm}}  \end{cases}

We have to find, Volume of cone.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\star\;{\underline{\frak{We\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\purple{Volume_{\;(cone)} = \dfrac{1}{3} \pi r^2 h}}}}\\ \\

\star\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf \dfrac{1}{ \cancel{3}} \times \dfrac{22}{ \cancel{7}} \times \cancel{6} \times 6 \times \cancel{14}\\ \\

:\implies\sf 22 \times 2 \times 6 \times 2\\ \\

:\implies\sf 44 \times 12\\ \\

:\implies{\boxed{\frak{\pink{528\;cm^3}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Volume\;of\;cone\;is\; \bf{528\;cm^3}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\quad\boxed{\bf{\mid{\overline{\underline{\red{\bigstar\: More\:to\:know :}}}}}\mid}\\\\

\;\;\;\bullet\;\;\sf CSA\;of\;cone = \pi rl\\ \\

\;\;\;\bullet\;\;\sf TSA\;of\;cone = \pi r(l + r)\\ \\

\;\;\;\bullet\;\;\sf CSA\;of\; cylinder = 2 \pi rh\\ \\

\;\;\;\bullet\;\;\sf TSA\;of\; cylinder = 2 \pi r(h + r)\\ \\

\;\;\;\bullet\;\;\sf Volume\;of\; cylinder = \pi r^2 h\\ \\

Similar questions