Math, asked by dilbaroshruti, 4 months ago

The Height and the slant Height of a cone are 21 cm and 28 cm respectively. Find the volume of the cone​

Answers

Answered by adityapoddar777
3

Answer:

7546cm³

Step-by-step explanation:

h=21 cm

l= 28 cm

since a cone forms a right angle triangle

therfore;

h²=p²+b² (Pythagoras theroem)

28²= 21²+ b²(b= radius of the cone)

b²= 784 - 441

b= √343

vol. = πr²h/3

= π √343×√343× 21/3

= 22×343×21/21

= 22×343

=7546 cm³

Answered by EuphoricBunny
4

☘️ Given :

  • Height = 21 cm
  • Slant height (length) = 28 cm
  • Find the volume of the cone.

\\ \\

☘️ Solution :

We know that,

Volume of the cone = 1/3 πr²h

\\

To find base radius 'r' we use the relation between r, l and h.

We know that in a cone,

\\ \purple{ \bf\: ➝   \:  \:   l² = r² + h² }   \\ \sf \: ➝ \:r =  \sqrt{l {}^{2}  - h {}^{2} }  \\  \sf \: ➝ \:r =   \sqrt{28 {}^{2}  - 21 {}^{2} }  \: cm \\ \sf \: ➝ \:r = 7 \sqrt{7}  \: cm \\  \\    \:  \:  \:  \:  \:  \: \underline{\boxed{ \therefore \: \rm\purple{  r= 7 \sqrt{7}   \: cm }}}\\ \\ \\

So, volume of the cone

\large \rm \purple{ =  \:  \:  \dfrac{1}{3}\pi \: r {}^{2}h   } \ \\ \\  = \:   \sf\frac{1}{3}  \times  \frac{22}{7}  \times 7  \sqrt{7}  \times 7 \sqrt{7}  \times 21 \: cm {}^{3}  \\  =  \:  \sf22 \times 7 \sqrt{7}  \times 7 \sqrt{ 7}  \: cm  {}^{3}  \\  =  \sf \: 22 \times 7 \times 7 \times ( \sqrt{7} ) {}^{2}  \: cm {}^{3}  \\  =  \sf \: 22 \times 7 \times 7 \times 7 \: cm  {}^{3}  \\  =  \sf \: 7546 \: cm {}^{3}  \\  \\ \underline  {\boxed{  \pink{\therefore \: \rm  the \: volume \: of \: the \: cone \:  =  \: 7546 \: cm {}^{3} } \: }} \\

Similar questions