Math, asked by nishilata1971, 8 months ago

The height and the slant height of a cone are 21cm and 28 cm respectively. Find the volume of the cone.​

Answers

Answered by sethrollins13
13

Given :

  • Height and Slant Height of a Cone are 21 cm and 28 cm respectively .

To Find :

  • Volume of Cone

Solution :

\longmapsto\tt{Height(h)=21\:cm}

\longmapsto\tt{Slant\:Height(l)=28\:cm}

Firstly we will find Radius of Cone :

\longmapsto\tt{{(l)}^{2}={(r)}^{2}+{(h)}^{2}}

\longmapsto\tt{{(28)}^{2}={(r)}^{2}+{(21)}^{2}}

\longmapsto\tt{784={(r)}^{2}+441}

\longmapsto\tt{784-441={(r)}^{2}}

\longmapsto\tt{\sqrt{373}=r}

\longmapsto\tt\bf{7\sqrt{7}=r}

So , The Radius of Cone is 77 cm ....

Now ,

\longmapsto\tt{Height(h)=21\:cm}

\longmapsto\tt{Radius(r)=7\sqrt{7}\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{1}{3} \times\dfrac{22}{7} \times{7\sqrt{7}}\times{7\sqrt{7}}\times{21}}

\longmapsto\tt{\dfrac{22\times{343}\times{{\cancel{3}}}}{{\cancel{3}}}}

\longmapsto\tt\bf{7546\:{cm}^{3}}

So , The Volume of Cone is 7546 cm³ ....

Answered by Anonymous
121

\LARGE\underline{\underline{\pink{\sf Given:}}}

⚝ Slant Height, l = 28cm

⚝ Height of Cone, h = 21cm

\LARGE\underline{\underline{\pink{\sf Find:}}}

⛥ What is the volume of Cone

\LARGE\underline{\underline{\pink{\sf Solution:}}}

Let, the radius of Cone be r cm

we, know that

 \boxed{ \sf {l}^{2} =  {r}^{2} +  {h}^{2} }

where,

  • l = 28cm
  • h = 21cm

So,

 \to\sf {l}^{2} =  {r}^{2} +  {h}^{2}

 \to\sf {(28)}^{2} =  {r}^{2} +  {(21)}^{2}

 \to\sf 784=  {r}^{2} + 441

 \to\sf 784 - 441 = {r}^{2}

 \to\sf 343 = {r}^{2}

 \to\sf r =  \sqrt{343}

 \to\sf r =  \sqrt{49 \times 7}

 \to\sf r =  7\sqrt{7}cm

So, radius = 7√7 cm

__________________

we, know that

\boxed{ \sf Volume \: of \: Cone = \dfrac{1}{3} \pi {r}^{2}h}

where,

  • π = 22/7
  • r = 77 cm
  • h = 21cm

So,

 \to\sf Volume \: of \: Cone = \dfrac{1}{3} \pi {r}^{2}h

 \to\sf Volume \: of \: Cone = \dfrac{1}{3} \times  \dfrac{22}{7} {(7 \sqrt{7})}^{2} \times 21

 \to\sf Volume \: of \: Cone = \dfrac{22}{21} (49 \times 7)\times 21

 \to\sf Volume \: of \: Cone = \dfrac{22}{21} (343\times 21)

 \to\sf Volume \: of \: Cone = \dfrac{22}{21} (7203)

 \to\sf Volume \: of \: Cone =  \cancel{\dfrac{158466}{21}} = 7546cm

 \to\sf Volume \: of \: Cone = 7546 {cm}^{3}

 \small{ \sf\therefore volume \: of \: cone \: 7546 {cm}^{3} }

Similar questions