Math, asked by Rati421, 1 month ago

the height in cm of 60 persons of different age groups are shown in the following table :-

Height in cm No. of persons

145-150 8

150-155. 10

155-160 9

160-165 15

165-170 10

170-175 8

Using the above table ,
1) draw a less than ogive
2) draw the more than ogive ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given data is

\: \:  \begin{gathered} \begin{array}{|c|c|} \bf{Height \: in \: cm} & \bf{Number \: of \: persons} \\ 145 - 150 & 8  \\150 - 155 & 10 \\155 - 160 & 9 \\160 - 165 & 15 \\165 - 170 & 10\\170 - 175 & 8 \end{array}\end{gathered}

Frequency distribution table for Less than Ogive

\:  \:\begin{gathered} \begin{array}{|c|c|} \bf{Less  \: than} & \bf{Cumulative \: Frequency} \\ 150 & 8  \\155 & 18 \\160 & 27 \\165 & 42 \\170 & 52\\175 & 60\end{array}\end{gathered}

Frequency distribution table for More than Ogive

\:  \: \begin{gathered} \begin{array}{|c|c|} \bf{More  \: than} & \bf{Cumulative \: Frequency} \\ 145  & 60  \\150 & 52 \\155 & 42 \\160  & 33\\165 & 18\\170  & 8\end{array}\end{gathered}

Additional Information :-

1. Ogive are used to find the median of the data.

2. The x - coordinate of point of intersection of less than ogive and more than ogive give the median value.

Attachments:
Similar questions