Physics, asked by lakshitagupta2700, 4 days ago

The height of 3 children in the class are 150 cm , 138 cm and 162 cm respectively. Find the average height and range of height.​

Answers

Answered by ImperialGladiator
43

Answer:

  • Average = 150cm
  • Range = 24cm

Explanation:

Given heights of 3 children in a class are 150cm, 138cm and 162cm respectively.

Find the average and the range of the height.

Average height of the class is given by,

 \rm =  \dfrac{sum \: of \: the \: heights}{number \: of \: the \: children}

 =  \dfrac{150 + 138 + 162}{3}

 =  \dfrac{450}{3}

 \rm = 150cm

Average height in the class is 150cm.

Now,

We know that,

Range of a data is the difference between the highest and the lowest values.

Here, Highest and the lowest values are 162 and 138cm respectively.

Range = 162 - 138

= 24cm

Range of the data is 24cm

Answered by Anonymous
32

Information provided with us:

  • The height of 3 children in the class are 150 cm , 138 cm and 162 cm respectively

What we have to find :

  • ➡ The required average height

  • ➡ The required range of height.

Formula used :

 \rm \: \bigstar \:  Mean  \: height

\rm \: \implies \:  \dfrac{Sum \: of \: heights \: of \: the \: children}{Total \:   \: numbers  \: of  \: children}

Here :

 \rm \bigstar \: {Sum \: of \: heights \: of \: the \: children}

 \rm \implies \: 150 + 138 + 162

\bf \implies \: 450

 \rm \bigstar{ \: Total \:   \: numbers  \: of  \: children}

\bf \implies \: 3

Now:

  • ➡ Place the obtained or given values in the formula of mean height and solve

 \rm \implies \:  \dfrac{450}{3}

\bf \implies \: 150

Henceforth:

➡ The mean height is 150 cm

Note:

  • ➡ The difference between the smallest and highest numbers or value is known as Range

Formula used:

\rm \implies R = H - L

Where :

  • ➡ R = range
  • ➡H = highest value
  • ➡L = lowest value

Now:

  • ➡ To Calculate the range, first put all the numbers in order from low to High

 \rm \implies \: 138, 150,162

  • ➡ Now Identify the lowest value (L) and the highest value (H).

 \rm \implies \: H = highest  \: value = 162

\rm \implies \: L = lowest \:  value = 138

  • ➡ Then subtract (take away) the lowest number from the highest

\rm \implies R = H - L

\rm \implies R = 162 - 138

\bf\implies R = 24

Therefore:

➡The range of height is 24cm

Similar questions