Math, asked by sehgalakshad3, 7 months ago

the height of a cone is 15 CM if its volume is 1004.8 cm cube find the radius of base use pi as 3.14​

Answers

Answered by TheFairyTale
12

Answer :-

  • The radius = 8 cm

GivEn :-

  • The height of the cone is 15 cm.
  • The volume of the cone is 1004.8 cm^3

To Find :-

  • The radius of the base of the cone.

Diagram :-

\setlength{\unitlength}{30} \begin{picture}(10,6)  \linethickness{1.2} \qbezier(1,1)(3., 0)(5,1)\qbezier(1,1)(3.,2)(5,1)\put(3,1){\circle*{0.15}}\put(3,1){\line(0,1){3}}\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)(3,4)(3,4)\put(3,1){\line(1,0){2}}\put(3.2,1.1){$ \bf r  \: cm $}\put(1.9,1.9){$ \bf 15 \:  cm $}\put(4,3.5){\boxed{ $ \bf @TheFairyTale $}}\end{picture}

Solution :-

Let the radius of the base be r cm.

We know, the volume of cone is

 \implies  \underline{\boxed { \red{\sf \: V_{cone} =  \dfrac{1}{3}  \times \pi \:  {r}^{2} h}}}

Now, putting the values we get,

 \implies \sf \: 1004.8 =  \dfrac{1}{3}  \times 3.14 \times  {r}^{2}  \times 15

 \implies \sf \: 1004.8 =  3.14 \times  {r}^{2}  \times 5

 \implies \sf \: 1004.8 =  15.7 \times  {r}^{2}

 \implies \sf \: {r}^{2}   =  \dfrac{1004.8}{15.7}

 \implies \sf \: {r}^{2} =  64

 \implies  \underline{\boxed { \red{\sf \: r =   \sqrt{64} = 8 }}}

Therefore, the radius of base of the cone is 8 cm

Similar questions