Math, asked by NotCorpseHusband, 2 months ago

The height of a cone is 15 cm. If its volume is 1570 cm3

, find the radius of the base.​

Answers

Answered by ImperialGladiator
8

Answer:

6cm (approx.)

Explanation :

We know that,

\bigstar \sf Volume \: of \: a \: cone \: is = \pi r^2\dfrac{\boldsymbol h}{3}

We are given with,

  • r(radius) = 15cm.
  • Volume = 1570cm³
  • Taking \pi as \sf {3.14}

Substituting the given values :

\sf \implies 1570 = \pi {r}^{2}  \dfrac{\boldsymbol h}{3}  \\

\sf \implies 1570 =  3.14 \times  {15}^{2}  \times  \dfrac{{\boldsymbol h}}{3}  \\

\sf \implies  \dfrac{1570 }{3.14}  = 15 \times 15 \times  \dfrac{\boldsymbol h}{3}  \\

\sf \implies 500 = 15 \times 5\boldsymbol h \\

\sf \implies 500 = 75\boldsymbol h \\

\sf \implies  \frac{500}{75}  = \boldsymbol h \\

\sf \implies 6.66 = \boldsymbol h \\

\sf \implies \boldsymbol h \approx 6cm.

{\underline{\sf {\therefore{ The \: height \: is \: 6cm (approx.)}}}}

Answered by Butterflysly678
4

Given:-

  • The height of cone is 15 cm.
  • Its volume is 1570 cm³.

To Find:-

  • Radius of it's base?

Solution:-

Volume of cone

 \dag { \boxed{ \underline{ \pink{⅓ \times   \rm \pi \times  {r}^{2} \times  h}}}}

Where,

  • r = radius
  • h = height

According to the question:-

↝\frac{1}{3}  \times   \rm \pi \times  {r}^{2} \times  h = 1570 \\  \\  ↝ \cancel\frac{1}{3}  \times   \rm 3.14 \times  {r}^{2} \times   \cancel{15} = 1570 \\  \\   ↝ 3.14\times  {r}^{2} \times  5 = 1570 \\  \\↝  {r}^{2}  =  \frac{1570}{3.14 \times 5}  \\  \\↝  {r}^{2}  = \cancel \frac {1570}{15.70}  \\  \\  ↝{r}^{2}  = 100 \\  \\ ↝r =  \sqrt{100}  \\  \\↝ \dag {\boxed {\blue{ r = 10}}}

Hence, the radius of base is 10 cm.

Similar questions