Math, asked by tamatarsingh, 3 months ago

The height of a cone is 16 cm and its base radius is 12 cm. Find curved surface area and the total surface area of the cone​

Answers

Answered by akshaya2255
4

first we need to find slant height of cone(l)

l^2= r^2+h^2

l^2= 144+256

l^2=400

l=20

NOW, curved surface area of cone=22/7×12×20

=754.287 sq.units

NOW, total surface area=754.287+22/7×144

=1206.8584 sq.units

Answered by LoverBoy346
1

Step-by-step explanation:

Given :-

  • height of cone = 16 cm
  • radius of cone = 12 cm

To find :-

  • curved surface of cone
  • total surface area of cone

  \color{red}\mathbb{We  \:  \: know \:  \:  that} \dashrightarrow

slant \:  \:  height, l =  \sqrt{ {h}^{2}  +  {r}^{2} }

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \implies \:  \sqrt{ {16}^{2}  +  {12}^{2} }

\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \implies \:  \sqrt{ 256 + 144}

\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \implies \:  \sqrt{400}

\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \implies \:  20 \: cm

Now, Curved surface area of cone

 \implies \: \pi rl

 \implies \:    \frac{22}{7}  \times 12 \times 20

 \boxed{ \implies \frac{</em><em>5</em><em>2</em><em>8</em><em>0</em><em>}{7}  \: cm}

Now total surface area of cone

 \implies \: 2\pi r(r + l)

 \implies \: 2 \times \frac{22}{7}  \times12(12 + 20)

 \implies2 \times  \frac{22}{7}  \times 264

 \boxed{ \implies \:  \frac{11616}{7}  \: cm}

Similar questions