Math, asked by gracelinesther, 7 months ago

The height of a cone is 20 cm and its base radius is 6 cm. Find the curved surface area and the total surface area of the cone.

Answers

Answered by MяƖиνιѕιвʟє
35

Given :-

  • The height of a cone is 20 cm and its base radius is 6 cm.

To find :-

  • Curved surface area and the total surface area of the cone.

Solution :-

→ Slant height = √(height)² + (radius)²

→ slant height = √h² + r²

→ l = √(20)² + (6)²

→ l = √400 + 36

→ l = √436

→ l = 20.8cm

Slant height of cone is 20.8cm

Curved surface area of cone

→ πrl

Put the all values

→ 22/7 × 6 × 20.8

→ 2745.6/7

→ 392.22cm² --(i)

Hence, curved surface area of cone is 10.89cm²

Total surface area of cone

→ πr² + πrl

→ 22/7 × (6)² + 392.22 (using i)

→ 22/7 × 36 + 392.22

→ 792/7 + 392.22

→ 113.14 + 392.22

→ 505.36 cm²

Therefore,

  • Curved surface area of cone = 392.22cm²

  • Total surface area of cone = 505.36cm²

Vamprixussa: Splendid !
Answered by Anonymous
113

\tt {\pink{Given}}\begin{cases} \sf{\green{Height  \: of  \: the \:  cone=20 \:  cm}}\\ \sf{\blue{Radius \:  of \:  base=6 \:  cm}}\\ \sf{\orange{Curved \:  Surface \:  Area \:  of  \: cone= \: ?}}\\ \sf{\red{Total  \: Surface  \: Area \:  of  \: cone= \: ?}}\end{cases}

Diagram :

\setlength{\unitlength}{30} \begin{picture}(20,10) \linethickness{2.5} \qbezier(1,1)(3., 0)(5,1)\qbezier(1,1)(3.,2)(5,1)\put(3,1){\circle*{0.15}}\put(3,1){\line(0,1){3}}\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)(3,4)(3,4)\put(3,1){\line(1,0){2}}\put(3,0.1){$ \sf Radius = 6 \: cm $}\put(-1,2.9){$ \sf Height=20\:cm$}\end{picture}

______________________

Answer:

\dashrightarrow\:\: \sf Slant \:  Height = \sqrt{(Height)^2 + (Radius)^2} \\  \\

\dashrightarrow\:\: \sf Slant \:  Height = \sqrt{(20)^2 + (6)^2} \\    \\

\dashrightarrow\:\: \sf Slant \:  Height = \sqrt{400 + 36} \\  \\

\dashrightarrow\:\: \sf Slant \:  Height = \sqrt{436} \\  \\

\dashrightarrow\:\: \sf Slant \:  Height = 20.8 \: cm \\  \\  \\

\underline{\textsf{Hence, slant height of the cone is 20.8 cm}}. \\  \\

_____________________

:\implies\sf Curved  \: Surface \:  Area \:  of  \: cone = \pi rl \\  \\  \\

:\implies\sf Curved  \: Surface \:  Area \:  of  \: cone = 3.14 \times 6 \times 20.8 \\  \\  \\

:\implies\underline{\boxed{\sf Curved  \: Surface \:  Area \:  of  \: cone = 391.872 \:  {cm}^{2}}}  \\  \\  \\

\underline{\textsf{Hence, Curved Surface Area of the cone is \textbf{391.872 cm$^2$}}}. \\  \\

_____________________

\leadsto\sf Total \:  Surface \:  Area  \: of  \: cone = \pi r  \: (r+l) \\  \\  \\

\leadsto\sf Total \:  Surface \:  Area  \: of  \: cone = 3.14  \times 6  \: (6+20.8) \\  \\  \\

\leadsto\sf Total \:  Surface \:  Area  \: of  \: cone = 18.84  \times  26.8\\  \\  \\

\leadsto\underline{\boxed{\sf Total \:  Surface \:  Area  \: of  \: cone = 509.912 \:  {cm}^{2}}}  \\  \\  \\

 \underline{\textsf{Hence, Total Surface Area of the cone is \textbf{509.912 cm$^2$}}}. \\  \\

____________________

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2


Vamprixussa: Excellent !
Similar questions