Math, asked by birankumarverma, 7 months ago

The height of a cone is 21 cm and its slant height is 28 cm. The volume
of the cone​

Answers

Answered by mathdude500
0

Answer:

\boxed{\sf \:  \: \sf \: Volume_{(Cone)} = 7546 \:  {cm}^{3} \: }  \\

Step-by-step explanation:

Given that,

Height of a cone, h = 21 cm

Slant height of a cone, l = 28 cm

Let assume that r be the radius of cone.

We know, Volume of cone of radius r and height h is given by

\sf \: Volume_{(Cone)} = \dfrac{1}{3}\pi {r}^{2}h \\

can be further rewritten as

\sf \: Volume_{(Cone)} = \dfrac{1}{3}\pi ({l}^{2} -  {h}^{2}) h \\

\sf \: Volume_{(Cone)} = \dfrac{1}{3} \times \dfrac{22}{7}  ({28}^{2} -  {21}^{2})  \times 21 \\

\sf \: Volume_{(Cone)} = 22 \times  (784 - 441)  \times 1 \\

\sf \: Volume_{(Cone)} = 22 \times  343 \\

\implies\sf \: \sf \: Volume_{(Cone)} = 7546 \:  {cm}^{3}  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered} \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions