Math, asked by gouthamsa2005, 5 months ago

the height of a cone is 4 cm and slant height 5 cm find the volume of cone​

Answers

Answered by StormEyes
2

\sf \Large Solution!!

We can assume the Height of cone as the Height of a Right angled Triangle whose base = Radius of the cone and slant height represents the Hypotenuse of that Triangle such that we can apply Pythagoras Theorem.

\sf \to 4^{2}+r^{2}=5^{2}

\sf \to 16+r^{2}=25

\sf \to r^{2}=9

\sf \to r=\sqrt{9}

\sf \to r=3

\sf \large Now,

\sf \to Volume\:of\:cone=\dfrac{1}{3}\pi r^{2}h

\sf \to Volume\:of\:cone=\dfrac{1}{3}\times \dfrac{22}{7}\times (3\:cm)^{2}\times 4\:cm

\sf \to Volume\:of\:cone=\dfrac{1}{3}\times \dfrac{22}{7}\times 9\:cm^{2}\times 4\:cm

\sf \to Volume\:of\:cone=\dfrac{264}{7}cm^{3}

\sf \boxed{\bigstar Volume\:of\:cone=37.71\:cm^{3}}

Thanks for asking!! :)

Answered by sheela26385
0

Answer:

  • Answer:37.71 cm^3

Answer:37.71 cm^3Step-by-step explanation:

  • Answer:37.71 cm^3Step-by-step explanation:Slant height (l) = 5 cm
  • Answer:37.71 cm^3Step-by-step explanation:Slant height (l) = 5 cmHeight (h)= 4 cm
  • Answer:37.71 cm^3Step-by-step explanation:Slant height (l) = 5 cmHeight (h)= 4 cmRadius(r)= ?

  • r^2= 5^2 - 4^2
  • r^2= 25 -16
  • r^2= 9
  • r=
  •  \sqrt{9}
  • r= 3cm
  • Volume of cone = 1/3
  • \pi \: r ^{2} h
  • 1/3 × 22/7 × 3×3 × 4
  • Now simplify above equation.
  • 264/7= 37.71 cm^3 Answer.

Similar questions