Math, asked by drona07, 3 months ago

The height of a cylinder is 14 cm and its curved surface area is 704 sq.
cm, then its diameter is​

Answers

Answered by ashwinipaisrs
0

Answer:

h= 14 cm

c s a = 704 sq cm

Step-by-step explanation:

C S A =2 πrh

704 =2 × 22/ 7× r × 14

r = 704 × 7

2× 22× 14

= 8

radius= 8 cm

diameter = 2r = 8× 2

= 16 cm

Answered by Anonymous
7

Given:-

  • Height of a cylinder is 14 cm.
  • Curved surface area of the Cylinder is 704 cm².

To find:-

  • Diameter of the cylinder.

Solution:-

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Curved\: surface\: area_{(cylinder)} = 2 \pi rh}}}}}

\tt\longmapsto{704 = 2 \times \dfrac{22}{7} \times r \times 14}

\tt\longmapsto{704 = 2 \times 22 \times r \times 2}

\tt\longmapsto{704 = 44 \times 2 \times r}

\tt\longmapsto{704 = 88 \times r}

\tt\longmapsto{r = \dfrac{704}{88}}

\tt\longmapsto{\boxed{\orange{r = 8\: cm}}}

Therefore,

  • Radius (r) = 8 cm
  • Diameter (d) = 8 × 2 = 16 cm

Hence,

  • the diameter of the cylinder is 16 cm.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions