Math, asked by mkd5842, 6 months ago

The height of a cylinder whose radius is 7 cm and the total surface area is 968
{cm}^{2}cm
2

is:

a•} 15 cm
b•} 17 cm
c•} 19 cm
d•} 21 cm

[Please Solve the question and then answer!!!]
[No Spam Allowed]​​

Answers

Answered by Anonymous
7

Hope it helps❤❤❤

PLEASE MARK ME AS BRAINLIEST

Attachments:
Answered by Anonymous
55

Given

  • Radius of a cylinder (r) = 7cm
  • Total surface area of the cylinder = 968cm²

To find

  • Height of the cylinder (h).

Solution

\sf\pink{⟶} We have given the total surface area of the cylinder with its radius = 7cm.

\sf\pink{⟶} Let the height of the cylinder be h.

  • Using the formula

\underline{\boxed{\tt{T.S.A\: of\: a\: cylinder = 2πr(h + r)}}}

\tt:\implies\: \: \: \: \: \: \: \: {T.S.A = 2 \times \dfrac{22}{\cancel{7}} \times\cancel{7}(h + 7)}

\tt:\implies\: \: \: \: \: \: \: \: {968 = 44 \times (h + 7)}

\tt:\implies\: \: \: \: \: \: \: \: {968 = 44h + 308}

\tt:\implies\: \: \: \: \: \: \: \: {968 - 308 = 44h}

\tt:\implies\: \: \: \: \: \: \: \: {660 = 44h}

\tt:\implies\: \: \: \: \: \: \: \: {h = \dfrac{660}{44}}

\tt:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\orange{h = 15cm}}}}

\sf\pink{⟶} Height of the cylinder is 15cm.

Hence, option (A) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions