Math, asked by ganjisai08gmailcom, 11 months ago

The height of a lower is 45 m. If the angle of elevation of sun is 30" Find the length
of the shadow of the lower at the time
in the wall and the ladder makes an angle​

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:shadow=}15\sqrt{3}\:m}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about the height of a tower is 45 m. If the angle of elevation of sun is 30°.

• We have to find the length of shadow.

 \green{\underline \bold{Given :}} \\ : \implies \text{Height\:of\: Tower= 45\: m} \\ \\ : \implies \text{Angle\:of\:elevation= }30^{\circ}\:m\\\\  \red{\underline \bold{To \: Find:}} \\ : \implies \text{Length\:of\:shadow= ?}

• Accroding to given question :

 \bold{in \:  \triangle \: ABC} \\   : \implies tan \:  \theta =  \frac{\text{Perpendicular}}{\text{Base}}  \\  \\    : \implies tan \:  30  ^ { \circ} =  \frac{AB}{AC}  \\  \\ : \implies \frac{1}{ \sqrt{3} }  =  \frac{45}{AC}  \\  \\  : \implies AC =  \frac{45}{ \sqrt{3} }  \\  \\  : \implies AB =  \frac{45 \sqrt{3} }{3}  \\  \\  \green{ : \implies  \text{AB = 15 }\sqrt{3}   \: m}

Similar questions