Math, asked by luckysinghrawatr, 9 months ago

the height of a right circular cylinder is 7 cm and radius 3cm find its curved surface area ,total surface area and volume​

Answers

Answered by GalacticCluster
37

Answer:

Given -

  • Height, h = 7 cm
  • Radius, r = 3 cm.

Let's find curved surface area of the cylinder -

 \\  \large{ \sf{ \underline{ \green{formula \:  -  \: 2\pi \: rh}}}} \\ \\   \\  \implies \sf \: 2 \times  \frac{22}{7}  \times 3 \times 7 \\  \\  \\  \implies \sf \: 6 \times 22 \\  \\  \\  \implies \sf \: 132 \:  {cm}^{2}  \\  \\

Total surface area of the cylinder -

 \\   \\ \large{ \sf{\underline{ \blue{formula - 2\pi \: r \: (r + h)}}}} \\  \\  \\  \implies \sf \: 2 \times  \frac{22}{7}  \times 3 \: (3 +7) \\  \\  \\  \implies \sf \: 60 \times  \frac{22}{7}  \\  \\  \\  \implies \sf \: 188.571 \:  {cm}^{2}  \\  \\

Volume of the cylinder -

  \\  \\ \large{ \sf \underline \orange{formula \:  -  \: \pi {r}^{2} h}} \\  \\  \\  \implies \sf \:  \frac{22}{7}  \times  {3}^{2}  \times 7 \\  \\  \\  \implies \sf \: 22 \times 3 \times 3 \\  \\  \\  \implies \sf \: 198 \:  {cm}^{3}  \\  \\

Hence,

  • Total surface area = 188.57 cm²
  • Curved surface area = 132 cm²
  • Volume = 198 cm³

Anonymous: awesome ♥️
Vamprixussa: Great answer !
Answered by Anonymous
104

☢ Given :-

  • Height of the cylinder (h) = 7 cm.

  • Radius of base (r) = 3 cm.

\underline{\bigstar\:\textbf{According to the Question :}}

\dashrightarrow\bf{\:\:CSA\:of\: cylinder = 2 \pi rh}\\\\\\\dashrightarrow\sf\:\: 2 \times \dfrac{22}{7}\times 3 \times 7\\\\\\\dashrightarrow\sf\:\: 22 \times 6 \\\\\\\dashrightarrow\:\:{\sf 132\:cm^2}

\therefore\:\underline{\textsf{CSA of cylinder is \textbf{132}} \:\sf{cm^3}}.

\rule{170}2

\dashrightarrow\bf{\:\:TSA\:of\: cylinder = 2 \pi r(h + r)}\\\\\\\dashrightarrow\sf\:\: 2 \times \dfrac{22}{7}\times 3 \: (7 + 3)\\\\\\\dashrightarrow\sf\:\: 2 \times \dfrac{22}{7} \times 3 \times 10 \\\\\\\dashrightarrow\sf\:\: \dfrac{1320}{7}\\\\\\\dashrightarrow\:\:{\sf 188.57\:cm^2}

\therefore\:\underline{\textsf{TSA of cylinder is \textbf{188.57}}\: \sf{cm^2}}.

\rule{170}2

\dashrightarrow\bf{\:\:Volume\:of\: cylinder = \pi r^2h}\\\\\\\dashrightarrow\sf\:\: \dfrac{22}{7}\times 3 \times 3 \times 7 \\\\\\\dashrightarrow\sf\:\: 22 \times 3 \times 3 \\\\\\\dashrightarrow\:\:{\sf 198\:cm^3}

\therefore\:\underline{\textsf{Volume of cylinder is \textbf{198}} \:\sf{cm^3}}.


Anonymous: awesome ♥️
Vamprixussa: Great answer !
Anonymous: Nice ♡
Similar questions