Math, asked by sapnadewasi198, 2 months ago

the height of a tower is 400m when the altitude of the sun is 30° then the length of its shadow will be​

Answers

Answered by ʝεɳყ
299

Given :

  • The height of a tower is 400m
  • The altitude of the sun is 30°

To Find :

  • Length of its shadow

Solution :

As per the given question,

  • Let the height of the tower AB = 100m

  • The altitude of the sun θ = 30°

  • Let the height of the shadow be CB = x

By using the formula,

So we know that AB = 200 , CB = x

⇒ tanθ = AB / CB

⇒ tan30° = 200 / x

⇒ 1/√3 = 200 / x

⇒ x = 200√3

Thus, CB = 200√3

° Hence, The length of its shadow is 200√3

____________________________

More to know :

  • tan0° = 0

  • tan30° = 1/√3

  • tan45° = 1

  • tan60° = √3

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Attachments:
Answered by WiIdBoy
1518

\huge\underline\bold\orange{Answer:-}

\large\underline\bold\red{Given:-}

• Height of a tower \implies 400m when altitude of the sun is 30°

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf 400m}\put(2.8,.3){\large\bf }\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\theta30$}\end{picture}

\large\underline\bold\red{To\:Find}

• Length of shadow of the tower .

\large\underline\bold\red{Solution}

Let the height of the tower AB = 200m

Let the height of the shadow be CB = x

By using the formula,

• AB = 200 , CB = x

\impliestanθ =  \frac{AB}{CB}

\implies tan30° =  \frac{200}{x}

\implies \frac{1}{ \sqrt{3} }  \:  =  \frac{200}{x}

\impliesx \:  = 200 \sqrt{3}

____________________________

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Similar questions