Math, asked by amritsandhupuhla3, 9 months ago

The height of an equilateral triangle is 4v3 cm. Find its area correct to three decimal
places. (Take 3 = 1.732)​

Answers

Answered by mathdude500
2

Answer:

\boxed{\bf \: Area\:of\:an\:equilateral\:triangle=  \: 27.712 \:  {cm}^{2} \: }  \\

Step-by-step explanation:

Let assume that side of an equilateral triangle be x cm

Given that,

\sf \: Height\:of\:an\:equilateral\:triangle = 4 \sqrt{3}  \:cm \\

\sf \: \dfrac{ \sqrt{3} }{2} \times side  = 4 \sqrt{3}  \: \\

\sf \: \dfrac{ \sqrt{3} }{2} \times x  = 4 \sqrt{3}  \: \\

\sf \: x  = 4 \sqrt{3}   \times \dfrac{2}{ \sqrt{3} } \: \\

\sf \: x  = 4 \times 2\: \\

\implies\sf \: x = 8 \: cm \\

Now,

\sf \:Area\:of\:an\:equilateral\:triangle \\

\sf \:  =  \: \dfrac{ \sqrt{3} }{4}  \times  {x}^{2}  \\

\sf \:  =  \: \dfrac{1.732 }{4}  \times  {(8)}^{2}  \\

\sf \:  =  \: \dfrac{1.732 }{4}  \times  64  \\

\sf \:  =  \: 1.732 \times 16 \\

\sf \:  =  \: 27.712 \:  {cm}^{2}  \\

Hence,

\implies\boxed{\bf \: Area\:of\:an\:equilateral\:triangle=  \: 27.712 \:  {cm}^{2} \: }  \\

\rule{190pt}{2pt}

Formulae Used:

\sf \: Height\:of\:an\:equilateral\:triangle = \dfrac{ \sqrt{3} }{2} \times side \:  \\

\sf \:Area\:of\:an\:equilateral\:triangle = \dfrac{ \sqrt{3} }{4} \times  {(side)}^{2}  \:  \\

Similar questions